21 research outputs found

    Compressive Faraday Imaging for Next-Generation Radio Telescopes

    Get PDF

    ADVANCED INTRAVASCULAR MAGNETIC RESONANCE IMAGING WITH INTERACTION

    Get PDF
    Intravascular (IV) Magnetic Resonance Imaging (MRI) is a specialized class of interventional MRI (iMRI) techniques that acquire MRI images through blood vessels to guide, identify and/or treat pathologies inside the human body which are otherwise difficult to locate and treat precisely. Here, interactions based on real-time computations and feedback are explored to improve the accuracy and efficiency of IVMRI procedures. First, an IV MRI-guided high-intensity focused ultrasound (HIFU) ablation method is developed for targeting perivascular pathology with minimal injury to the vessel wall. To take advantage of real-time feedback, a software interface is developed for monitoring thermal dose with real-time MRI thermometry, and an MRI-guided ablation protocol developed and tested on muscle and liver tissue ex vivo. It is shown that, with cumulative thermal dose monitored with MRI thermometry, lesion location and dimensions can be estimated consistently, and desirable thermal lesions can be achieved in animals in vivo. Second, to achieve fully interactive IV MRI, high-resolution real-time 10 frames-per-second (fps) MRI endoscopy is developed as an advance over prior methods of MRI endoscopy. Intravascular transmit-receive MRI endoscopes are fabricated for highly under-sampled radial-projection MRI in a clinical 3Tesla MRI scanner. Iterative nonlinear reconstruction is accelerated using graphics processor units (GPU) to achieve true real-time endoscopy visualization at the scanner. The results of high-speed MRI endoscopy at 6-10 fps are consistent with fully-sampled MRI endoscopy and histology, with feasibility demonstrated in vivo in a large animal model. Last, a general framework for automatic imaging contrast tuning over MRI protocol parameters is explored. The framework reveals typical signal patterns over different protocol parameters from calibration imaging data and applies this knowledge to design efficient acquisition strategies and predicts contrasts under unacquired protocols. An external computer in real-time communication with the MRI console is utilized for online processing and controlling MRI acquisitions. This workflow enables machine learning for optimizing acquisition strategies in general, and provides a foundation for efficiently tuning MRI protocol parameters to perform interventional MRI in the highly varying and interactive environments commonly in play. This work is loosely inspired by prior research on extremely accelerated MRI relaxometry using the minimal-acquisition linear algebraic modeling (SLAM) method

    Proceedings of the International Workshop on Medical Ultrasound Tomography: 1.- 3. Nov. 2017, Speyer, Germany

    Get PDF
    Ultrasound Tomography is an emerging technology for medical imaging that is quickly approaching its clinical utility. Research groups around the globe are engaged in research spanning from theory to practical applications. The International Workshop on Medical Ultrasound Tomography (1.-3. November 2017, Speyer, Germany) brought together scientists to exchange their knowledge and discuss new ideas and results in order to boost the research in Ultrasound Tomography
    corecore