2,699 research outputs found

    Towards music perception by redundancy reduction and unsupervised learning in probabilistic models

    Get PDF
    PhDThe study of music perception lies at the intersection of several disciplines: perceptual psychology and cognitive science, musicology, psychoacoustics, and acoustical signal processing amongst others. Developments in perceptual theory over the last fifty years have emphasised an approach based on Shannon’s information theory and its basis in probabilistic systems, and in particular, the idea that perceptual systems in animals develop through a process of unsupervised learning in response to natural sensory stimulation, whereby the emerging computational structures are well adapted to the statistical structure of natural scenes. In turn, these ideas are being applied to problems in music perception. This thesis is an investigation of the principle of redundancy reduction through unsupervised learning, as applied to representations of sound and music. In the first part, previous work is reviewed, drawing on literature from some of the fields mentioned above, and an argument presented in support of the idea that perception in general and music perception in particular can indeed be accommodated within a framework of unsupervised learning in probabilistic models. In the second part, two related methods are applied to two different low-level representations. Firstly, linear redundancy reduction (Independent Component Analysis) is applied to acoustic waveforms of speech and music. Secondly, the related method of sparse coding is applied to a spectral representation of polyphonic music, which proves to be enough both to recognise that the individual notes are the important structural elements, and to recover a rough transcription of the music. Finally, the concepts of distance and similarity are considered, drawing in ideas about noise, phase invariance, and topological maps. Some ecologically and information theoretically motivated distance measures are suggested, and put in to practice in a novel method, using multidimensional scaling (MDS), for visualising geometrically the dependency structure in a distributed representation.Engineering and Physical Science Research Counci

    Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling

    Full text link
    Solving linear regression problems based on the total least-squares (TLS) criterion has well-documented merits in various applications, where perturbations appear both in the data vector as well as in the regression matrix. However, existing TLS approaches do not account for sparsity possibly present in the unknown vector of regression coefficients. On the other hand, sparsity is the key attribute exploited by modern compressive sampling and variable selection approaches to linear regression, which include noise in the data, but do not account for perturbations in the regression matrix. The present paper fills this gap by formulating and solving TLS optimization problems under sparsity constraints. Near-optimum and reduced-complexity suboptimum sparse (S-) TLS algorithms are developed to address the perturbed compressive sampling (and the related dictionary learning) challenge, when there is a mismatch between the true and adopted bases over which the unknown vector is sparse. The novel S-TLS schemes also allow for perturbations in the regression matrix of the least-absolute selection and shrinkage selection operator (Lasso), and endow TLS approaches with ability to cope with sparse, under-determined "errors-in-variables" models. Interesting generalizations can further exploit prior knowledge on the perturbations to obtain novel weighted and structured S-TLS solvers. Analysis and simulations demonstrate the practical impact of S-TLS in calibrating the mismatch effects of contemporary grid-based approaches to cognitive radio sensing, and robust direction-of-arrival estimation using antenna arrays.Comment: 30 pages, 10 figures, submitted to IEEE Transactions on Signal Processin

    Energy-efficient information inference in wireless sensor networks based on graphical modeling

    Get PDF
    This dissertation proposes a systematic approach, based on a probabilistic graphical model, to infer missing observations in wireless sensor networks (WSNs) for sustaining environmental monitoring. This enables us to effectively address two critical challenges in WSNs: (1) energy-efficient data gathering through planned communication disruptions resulting from energy-saving sleep cycles, and (2) sensor-node failure tolerance in harsh environments. In our approach, we develop a pairwise Markov Random Field (MRF) to model the spatial correlations in a sensor network. Our MRF model is first constructed through automatic learning from historical sensed data, by using Iterative Proportional Fitting (IPF). When the MRF model is constructed, Loopy Belief Propagation (LBP) is then employed to perform information inference to estimate the missing data given incomplete network observations. The proposed approach is then improved in terms of energy-efficiency and robustness from three aspects: model building, inference and parameter learning. The model and methods are empirically evaluated using multiple real-world sensor network data sets. The results demonstrate the merits of our proposed approaches

    Statistical models for natural sounds

    Get PDF
    It is important to understand the rich structure of natural sounds in order to solve important tasks, like automatic speech recognition, and to understand auditory processing in the brain. This thesis takes a step in this direction by characterising the statistics of simple natural sounds. We focus on the statistics because perception often appears to depend on them, rather than on the raw waveform. For example the perception of auditory textures, like running water, wind, fire and rain, depends on summary-statistics, like the rate of falling rain droplets, rather than on the exact details of the physical source. In order to analyse the statistics of sounds accurately it is necessary to improve a number of traditional signal processing methods, including those for amplitude demodulation, time-frequency analysis, and sub-band demodulation. These estimation tasks are ill-posed and therefore it is natural to treat them as Bayesian inference problems. The new probabilistic versions of these methods have several advantages. For example, they perform more accurately on natural signals and are more robust to noise, they can also fill-in missing sections of data, and provide error-bars. Furthermore, free-parameters can be learned from the signal. Using these new algorithms we demonstrate that the energy, sparsity, modulation depth and modulation time-scale in each sub-band of a signal are critical statistics, together with the dependencies between the sub-band modulators. In order to validate this claim, a model containing co-modulated coloured noise carriers is shown to be capable of generating a range of realistic sounding auditory textures. Finally, we explored the connection between the statistics of natural sounds and perception. We demonstrate that inference in the model for auditory textures qualitatively replicates the primitive grouping rules that listeners use to understand simple acoustic scenes. This suggests that the auditory system is optimised for the statistics of natural sounds

    Deep Learning for Single Image Super-Resolution: A Brief Review

    Get PDF
    Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page
    corecore