457 research outputs found

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE

    Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with non-stationary source activations

    Get PDF
    International audienceMagnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While solving the inverse problem independently at every time point can give an image of the active brain at every millisecond, such a procedure does not capitalize on the temporal dynamics of the signal. Linear inverse methods (Minimum-norm, dSPM, sLORETA, beamformers) typically assume that the signal is stationary: regularization parameter and data covariance are independent of time and the time varying signal-to-noise ratio (SNR). Other recently proposed non-linear inverse solvers promoting focal activations estimate the sources in both space and time while also assuming stationary sources during a time interval. However such an hypothesis only holds for short time intervals. To overcome this limitation, we propose time-frequency mixed-norm estimates (TF-MxNE), which use time-frequency analysis to regularize the ill-posed inverse problem. This method makes use of structured sparse priors defined in the time-frequency domain, offering more accurate estimates by capturing the non-stationary and transient nature of brain signals. State-of-the-art convex optimization procedures based on proximal operators are employed, allowing the derivation of a fast estimation algorithm. The accuracy of the TF-MxNE is compared to recently proposed inverse solvers with help of simulations and by analyzing publicly available MEG datasets

    A Performance Study of various Brain Source Imaging Approaches

    Get PDF
    International audienceThe objective of brain source imaging consists in reconstructing the cerebral activity everywhere within the brain based on EEG or MEG measurements recorded on the scalp. This requires solving an ill-posed linear inverse problem. In order to restore identifiability, additional hypotheses need to be imposed on the source distribution, giving rise to an impressive number of brain source imaging algorithms. However, a thorough comparison of different methodologies is still missing in the literature. In this paper, we provide an overview of priors that have been used for brain source imaging and conduct a comparative simulation study with seven representative algorithms corresponding to the classes of minimum norm, sparse, tensor-based, subspace-based, and Bayesian approaches. This permits us to identify new benchmark algorithms and promising directions for future research

    Dynamic inverse problem solution considering non-homogeneous source distribution with frequency spatio temporal constraints applied to brain activity reconstruction

    Get PDF
    Para reconstruir la actividad cerebral es necesario estimular la ubicación de las fuentes activas del cerebro. El método de localización de fuentes usando electroencefalogramas es usado para esta tarea por su alta resolución temporal. Este método de resolver un problema inverso mal planteado, el cual no tiene una solución única debido al que el números de variables desconocidas es mas grande que el numero de variables conocidas. por lo tanto el método presenta una baja resolución espacial..

    EEG Based Inference of Spatio-Temporal Brain Dynamics

    Get PDF

    M/EEG source reconstruction based on Gabor thresholding in the source space

    Get PDF
    International audienceThanks to their high temporal resolution, source reconstruction based on Magnetoencephalography (MEG) and/or Electroencephalography (EEG) is an important tool for noninvasive functional brain imaging. Since the MEG/EEG inverse problem is ill-posed, inverse solvers employ priors on the sources. While priors are generally applied in the time domain, the time-frequency (TF) characteristics of brain signals are rarely employed as a spatio-temporal prior. In this work, we present an inverse solver which employs a structured sparse prior formed by the sum of â„“21\ell_{21} and â„“1\ell_{1} norms on the coefficients of the Gabor TF decomposition of the source activations. The resulting convex optimization problem is solved using a first-order scheme based on proximal operators. We provide empirical evidence based on EEG simulations that the proposed method is able to recover neural activations that are spatially sparse, temporally smooth and non-stationary. We compare our approach to alternative solvers based also on convex sparse priors, and demonstrate the benefit of promoting sparse Gabor decompositions via a mathematically principled iterative thresholding procedure

    Sparse algorithms for EEG source localization

    Full text link
    Source localization using EEG is important in diagnosing various physiological and psychiatric diseases related to the brain. The high temporal resolution of EEG helps medical professionals assess the internal physiology of the brain in a more informative way. The internal sources are obtained from EEG by an inversion process. The number of sources in the brain outnumbers the number of measurements. In this article, a comprehensive review of the state of the art sparse source localization methods in this field is presented. A recently developed method, certainty based reduced sparse solution (CARSS), is implemented and is examined. A vast comparative study is performed using a sixty four channel setup involving two source spaces. The first source space has 5004 sources and the other has 2004 sources. Four test cases with one, three, five, and seven simulated active sources are considered. Two noise levels are also being added to the noiseless data. The CARSS is also evaluated. The results are examined. A real EEG study is also attempted.Comment: Published in Medical & Biological Engineering & Computing, Springer on Oct 02, 202

    Brain source imaging: from sparse to tensor models

    Get PDF
    International audienceA number of application areas such as biomedical engineering require solving an underdetermined linear inverse problem. In such a case, it is necessary to make assumptions on the sources to restore identifiability. This problem is encountered in brain source imaging when identifying the source signals from noisy electroencephalographic or magnetoencephalographic measurements. This inverse problem has been widely studied during the last decades, giving rise to an impressive number of methods using different priors. Nevertheless, a thorough study of the latter, including especially sparse and tensor-based approaches, is still missing. In this paper, we propose i) a taxonomy of the algorithms based on methodological considerations, ii) a discussion of identifiability and convergence properties, advantages, drawbacks, and application domains of various techniques, and iii) an illustration of the performance of selected methods on identical data sets. Directions for future research in the area of biomedical imaging are eventually provided
    • …
    corecore