414 research outputs found

    Analysis, Visualization, and Transformation of Audio Signals Using Dictionary-based Methods

    Get PDF
    date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +0000date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +000

    The Discrete Logarithm Problem in Finite Fields of Small Characteristic

    Get PDF
    Computing discrete logarithms is a long-standing algorithmic problem, whose hardness forms the basis for numerous current public-key cryptosystems. In the case of finite fields of small characteristic, however, there has been tremendous progress recently, by which the complexity of the discrete logarithm problem (DLP) is considerably reduced. This habilitation thesis on the DLP in such fields deals with two principal aspects. On one hand, we develop and investigate novel efficient algorithms for computing discrete logarithms, where the complexity analysis relies on heuristic assumptions. In particular, we show that logarithms of factor base elements can be computed in polynomial time, and we discuss practical impacts of the new methods on the security of pairing-based cryptosystems. While a heuristic running time analysis of algorithms is common practice for concrete security estimations, this approach is insufficient from a mathematical perspective. Therefore, on the other hand, we focus on provable complexity results, for which we modify the algorithms so that any heuristics are avoided and a rigorous analysis becomes possible. We prove that for any prime field there exist infinitely many extension fields in which the DLP can be solved in quasi-polynomial time. Despite the two aspects looking rather independent from each other, it turns out, as illustrated in this thesis, that progress regarding practical algorithms and record computations can lead to advances on the theoretical running time analysis -- and the other way around.Die Berechnung von diskreten Logarithmen ist ein eingehend untersuchtes algorithmisches Problem, dessen Schwierigkeit zahlreiche Anwendungen in der heutigen Public-Key-Kryptographie besitzt. Für endliche Körper kleiner Charakteristik sind jedoch kürzlich erhebliche Fortschritte erzielt worden, welche die Komplexität des diskreten Logarithmusproblems (DLP) in diesem Szenario drastisch reduzieren. Diese Habilitationsschrift erörtert zwei grundsätzliche Aspekte beim DLP in Körpern kleiner Charakteristik. Es werden einerseits neuartige, erheblich effizientere Algorithmen zur Berechnung von diskreten Logarithmen entwickelt und untersucht, wobei die Laufzeitanalyse auf heuristischen Annahmen beruht. Unter anderem wird gezeigt, dass Logarithmen von Elementen der Faktorbasis in polynomieller Zeit berechnet werden können, und welche praktischen Auswirkungen die neuen Verfahren auf die Sicherheit paarungsbasierter Kryptosysteme haben. Während heuristische Laufzeitabschätzungen von Algorithmen für die konkrete Sicherheitsanalyse üblich sind, so erscheint diese Vorgehensweise aus mathematischer Sicht unzulänglich. Der Aspekt der beweisbaren Komplexität für DLP-Algorithmen konzentriert sich deshalb darauf, modifizierte Algorithmen zu entwickeln, die jegliche heuristische Annahme vermeiden und dessen Laufzeit rigoros gezeigt werden kann. Es wird bewiesen, dass für jeden Primkörper unendlich viele Erweiterungskörper existieren, für die das DLP in quasi-polynomieller Zeit gelöst werden kann. Obwohl die beiden Aspekte weitgehend unabhängig voneinander erscheinen mögen, so zeigt sich, wie in dieser Schrift illustriert wird, dass Fortschritte bei praktischen Algorithmen und Rekordberechnungen auch zu Fortentwicklungen bei theoretischen Laufzeitabschätzungen führen -- und umgekehrt

    Learning adapted dictionaries for geometry and texture separation

    Full text link

    Mining and modeling graphs using patterns and priors

    No full text

    Exact and efficient algorithms for pairwise learning

    Get PDF

    Convolutional MKL based multimodal emotion recognition and sentiment analysis

    Get PDF
    Technology has enabled anyone with an Internet connection to easily create and share their ideas, opinions and content with millions of other people around the world. Much of the content being posted and consumed online is multimodal. With billions of phones, tablets and PCs shipping today with built-in cameras and a host of new video-equipped wearables like Google Glass on the horizon, the amount of video on the Internet will only continue to increase. It has become increasingly difficult for researchers to keep up with this deluge of multimodal content, let alone organize or make sense of it. Mining useful knowledge from video is a critical need that will grow exponentially, in pace with the global growth of content. This is particularly important in sentiment analysis, as both service and product reviews are gradually shifting from unimodal to multimodal. We present a novel method to extract features from visual and textual modalities using deep convolutional neural networks. By feeding such features to a multiple kernel learning classifier, we significantly outperform the state of the art of multimodal emotion recognition and sentiment analysis on different datasets

    Applied microlocal analysis of deep neural networks for inverse problems

    Get PDF
    Deep neural networks have recently shown state-of-the-art performance in different imaging tasks. As an example, EfficientNet is today the best image classifier on the ImageNet challenge. They are also very powerful for image reconstruction, for example, deep learning currently yields the best methods for CT reconstruction. Most imaging problems, such as CT reconstruction, are ill-posed inverse problems, which hence require regularization techniques typically based on a-priori information. Also, due to the human visual system, singularities such as edge-like features are the governing structures of images. This leads to the question of how to incorporate such information into a solver of an inverse problem in imaging and how deep neural networks operate on singularities. The main research theme of this thesis is to introduce theoretically founded approaches to use deep neural networks in combination with model-based methods to solve inverse problems from imaging science. We do this by heavily exploring the singularity structure of images as a-priori information. We then develop a comprehensive analysis of how neural networks act on singularities using predominantly methods from the microlocal analysis. For analyzing the interaction of deep neural networks with singularities, we introduce a novel technique to compute the propagation of wavefront sets through convolutional residual neural networks (conv-ResNet). This is achieved in a two-fold manner: We first study the continuous case where the neural network is defined in an infinite-dimensional continuous space. This problem is tackled by using the structure of these networks as a sequential application of continuous convolutional operators and ReLU non-linearities and applying microlocal analysis techniques to track the propagation of the wavefront set through the layers. This then leads to the so-called \emph{microcanonical relation} that describes the propagation of the wavefront set under the action of such a neural network. Secondly, for studying real-world discrete problems, we digitize the necessary microlocal analysis methods via the digital shearlet transform. The key idea is the fact that the shearlet transform optimally represents Fourier integral operators hence such a discretization decays rapidly, allowing a finite approximation. Fourier integral operators play an important role in microlocal analysis, since it is well known that they preserve singularities on functions, and, in addition, they have a closed form microcanonical relation. Also, based on the newly developed theoretical analysis, we introduce a method that uses digital shearlet coefficients to compute the digital wavefront set of images by a convolutional neural network. Our approach is then used for a similar analysis of the microlocal behavior of the learned-primal dual architecture, which is formed by a sequence of conv-ResNet blocks. This architecture has shown state-of-the-art performance in inverse problem regularization, in particular, computed tomography reconstruction related to the Radon transform. Since the Radon operator is a Fourier integral operator, our microlocal techniques can be applied. Therefore, we can study with high precision the singularities propagation of this architecture. Aiming to empirically analyze our theoretical approach, we focus on the reconstruction of X-ray tomographic data. We approach this problem by using a task-adapted reconstruction framework, in which we combine the task of reconstruction with the task of computing the wavefront set of the original image as a-priori information. Our numerical results show superior performance with respect to current state-of-the-art tomographic reconstruction methods; hence we anticipate our work to also be a significant contribution to the biomedical imaging community.Tiefe neuronale Netze haben in letzter Zeit bei verschiedenen Bildverarbeitungsaufgaben Spitzenleistungen gezeigt. Zum Beispiel ist AlexNet heute der beste Bildklassifikator bei der ImageNet-Challenge. Sie sind auch sehr leistungsfaehig fue die Bildrekonstruktion, zum Beispiel liefert Deep Learning derzeit die besten Methoden fuer die CT-Rekonstruktion. Die meisten Bildgebungsprobleme wie die CT-Rekonstruktion sind schlecht gestellte inverse Probleme, die daher Regularisierungstechniken erfordern, die typischerweise auf vorherigen Informationen basieren. Auch aufgrund des menschlichen visuellen Systems sind Singularitaeten wie kantenartige Merkmale die bestimmenden Strukturen von Bildern. Dies fuehrt zu der Frage, wie man solche Informationen in einen Loeser eines inversen Problems in der Bildverarbeitung einbeziehen kann und wie tiefe neuronale Netze mit Singularitaeten arbeiten. Das Hauptforschungsthema dieser Arbeit ist die Einfuehrung theoretisch fundierter konzeptioneller Ansaetze zur Verwendung von tiefen neuronalen Netzen in Kombination mit modellbasierten Methoden zur Loesung inverser Probleme aus der Bildwissenschaft. Wir tun dies, indem wir die Singularitaetsstruktur von Bildern als Vorinformation intensiv erforschen. Dazu entwickeln wir eine umfassende Analyse, wie neuronale Netze auf Singularitaeten wirken, indem wir vorwiegend Methoden aus der mikrolokalen Analyse verwenden. Um die Interaktion von tiefen neuronalen Netzen mit Singularitaeten zu analysieren, fuehren wir eine neuartige Technik ein, um die Ausbreitung von Wellenfrontsaetzen mit Hilfe von Convolutional Residual neuronalen Netzen (Conv-ResNet) zu berechnen. Dies wird auf zweierlei Weise erreicht: Zunaechst untersuchen wir den kontinuierlichen Fall, bei dem das neuronale Netz in einem unendlich dimensionalen kontinuierlichen Raum definiert ist. Dieses Problem wird angegangen, indem wir die besondere Struktur dieser Netze als sequentielle Anwendung von kontinuierlichen Faltungsoperatoren und ReLU-Nichtlinearitaeten nutzen und mikrolokale Analyseverfahren anwenden, um die Ausbreitung einer Wellenfrontmenge durch die Schichten zu verfolgen. Dies fuehrt dann zu einer mikrokanonischen Beziehung, die die Ausbreitung der Wellenfrontmenge unter ihrer Wirkung beschreibt. Zweitens digitalisieren wir die notwendigen mikrolokalen Analysemethoden ueber die digitale Shearlet-Transformation, wobei die Digitalisierung fuer die Untersuchung realer Probleme notwendig ist. Die Schluesselidee ist die Tatsache, dass die Shearlet-Transformation Fourier-Integraloperatoren optimal repraesentiert, so dass eine solche Diskretisierung schnell abklingt und eine endliche Approximation ermoeglicht. Nebenbei stellen wir auch eine Methode vor, die digitale Shearlet-Koeffizienten verwendet, um den digitalen Wellenfrontsatz von Bildern durch ein Faltungsneuronales Netzwerk zu berechnen. Unser Ansatz wird dann fuer eine aehnliche Analyse fuer die gelernte primale-duale Architektur verwendet, die durch eine Sequenz von conv-ResNet-Bloecken gebildet wird. Diese Architektur hat bei der Rekonstruktion inverser Probleme, insbesondere bei der Rekonstruktion der Computertomographie im Zusammenhang mit der Radon-Transformation, Spitzenleistungen gezeigt. Da der Radon-Operator ein Fourier-Integraloperator ist, koennen unsere mikrolokalen Techniken angewendet werden. Um unseren theoretischen Ansatz numerisch zu analysieren, konzentrieren wir uns auf die Rekonstruktion von Roentgentomographiedaten. Wir naehern uns diesem Problem mit Hilfe eines aufgabenangepassten Rekonstruktionsrahmens, in dem wir die Aufgabe der Rekonstruktion mit der Aufgabe der Berechnung der Wellenfrontmenge des Originalbildes als Vorinformation kombinieren. Unsere numerischen Ergebnisse zeigen eine ueberragende Leistung, daher erwarten wir, dass dies auch ein interessanter Beitrag fuer die biomedizinische Bildgebung sein wird
    corecore