12 research outputs found

    Channel Estimation and ICI Cancelation in Vehicular Channels of OFDM Wireless Communication Systems

    Full text link
    Orthogonal frequency division multiplexing (OFDM) scheme increases bandwidth efficiency (BE) of data transmission and eliminates inter symbol interference (ISI). As a result, it has been widely used for wideband communication systems that have been developed during the past two decades and it can be a good candidate for the emerging communication systems such as fifth generation (5G) cellular networks with high carrier frequency and communication systems of high speed vehicles such as high speed trains (HSTs) and supersonic unmanned aircraft vehicles (UAVs). However, the employment of OFDM for those upcoming systems is challenging because of high Doppler shifts. High Doppler shift makes the wideband communication channel to be both frequency selective and time selective, doubly selective (DS), causes inter carrier interference (ICI) and destroys the orthogonality between the subcarriers of OFDM signal. In order to demodulate the signal in OFDM systems and mitigate ICIs, channel state information (CSI) is required. In this work, we deal with channel estimation (CE) and ICI cancellation in DS vehicular channels. The digitized model of the DS channels can be short and dense, or long and sparse. CE methods that perform well for short and dense channels are highly inefficient for long and sparse channels. As a result, for the latter type of channels, we proposed the employment of compressed sensing (CS) based schemes for estimating the channel. In addition, we extended our CE methods for multiple input multiple output (MIMO) scenarios. We evaluated the CE accuracy and data demodulation fidelity, along with the BE and computational complexity of our methods and compared the results with the previous CE procedures in different environments. The simulation results indicate that our proposed CE methods perform considerably better than the conventional CE schemes

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Homotopy based algorithms for â„“0\ell_0-regularized least-squares

    Get PDF
    Sparse signal restoration is usually formulated as the minimization of a quadratic cost function ∥y−Ax∥22\|y-Ax\|_2^2, where A is a dictionary and x is an unknown sparse vector. It is well-known that imposing an ℓ0\ell_0 constraint leads to an NP-hard minimization problem. The convex relaxation approach has received considerable attention, where the ℓ0\ell_0-norm is replaced by the ℓ1\ell_1-norm. Among the many efficient ℓ1\ell_1 solvers, the homotopy algorithm minimizes ∥y−Ax∥22+λ∥x∥1\|y-Ax\|_2^2+\lambda\|x\|_1 with respect to x for a continuum of λ\lambda's. It is inspired by the piecewise regularity of the ℓ1\ell_1-regularization path, also referred to as the homotopy path. In this paper, we address the minimization problem ∥y−Ax∥22+λ∥x∥0\|y-Ax\|_2^2+\lambda\|x\|_0 for a continuum of λ\lambda's and propose two heuristic search algorithms for ℓ0\ell_0-homotopy. Continuation Single Best Replacement is a forward-backward greedy strategy extending the Single Best Replacement algorithm, previously proposed for ℓ0\ell_0-minimization at a given λ\lambda. The adaptive search of the λ\lambda-values is inspired by ℓ1\ell_1-homotopy. ℓ0\ell_0 Regularization Path Descent is a more complex algorithm exploiting the structural properties of the ℓ0\ell_0-regularization path, which is piecewise constant with respect to λ\lambda. Both algorithms are empirically evaluated for difficult inverse problems involving ill-conditioned dictionaries. Finally, we show that they can be easily coupled with usual methods of model order selection.Comment: 38 page

    Sparsity-Aware Low-Power ADC Architecture with Advanced Reconstruction Algorithms

    Get PDF
    Compressive sensing (CS) technique enables a universal sub-Nyquist sampling of sparse and compressible signals, while still guaranteeing the reliable signal recovery. Its potential lies in the reduced analog-to-digital conversion rate in sampling broadband and/or multi-channel sparse signals, where conventional Nyquist-rate sampling are either technology impossible or extremely hardware costly. Nevertheless, there are many challenges in the CS hardware design. In coherent sampling, state-of-the-art mixed-signal CS front-ends, such as random demodulator and modulated wideband converter, suffer from high power and nonlinear hardware. In signal recovery, state-of-the-art CS reconstruction methods have tractable computational complexity and probabilistically guaranteed performance. However, they are still high cost (basis pursuit) or noise sensitive (matching pursuit). In this dissertation, we propose an asynchronous compressive sensing (ACS) front-end and advanced signal reconstruction algorithms to address these challenges. The ACS front-end consists of a continuous-time ternary encoding (CT-TE) scheme which converts signal amplitude variations into high-rate ternary timing signal, and a digital random sampler (DRS) which captures the ternary timing signal at sub-Nyquist rate. The CT-TE employs asynchronous sampling mechanism for pulsed-like input and has signal-dependent conversion rate. The DRS has low power, ease of massive integration, and excellent linearity in comparison to state-of-the-art mixed-signal CS front-ends. We propose two reconstruction algorithms. One is group-based total variation, which exploits piecewise-constant characteristics and achieves better mean squared error and faster convergence rate than the conventional TV scheme with moderate noise. The second algorithm is split-projection least squares (SPLS), which relies on a series of low-complexity and independent l2-norm problems with the prior on ternary-valued signal. The SPLS scheme has good noise robustness, low-cost signal reconstruction and facilitates a parallel hardware for real-time signal recovery. In application study, we propose multi-channel filter banks ACS front-end for the interference-robust radar. The proposed receiver performs reliable target detection with nearly 8-fold data compression than Nyquist-rate sampling in the presence of -50dBm wireless interference. We also propose an asynchronous compressed beamformer (ACB) for low-power portable diagnostic ultrasound. The proposed ACB achieves 9-fold data volume compression and only 4.4% contrast-to-noise ratio loss on the imaging results when compared with the Nyquist-rate ADCs

    Representative-based Big Data Processing in Communications and Machine Learning

    Get PDF
    The present doctoral dissertation focuses on representative-based processing proper for a big set of high-dimensional data. Compression and subset selection are considered as two main effective methods for representing a big set of data by a much smaller set of variables. Compressive sensing, matrix singular value decomposition, and tensor decomposition are employed as powerful mathematical tools to analyze the original data in terms of their representatives. Spectrum sensing is an important application of the developed theoretical analysis. In a cognitive radio network (CRN), primary users (PUs) coexist with secondary users (SUs). However, the secondary network aims to characterize PUs in order to establish a communication link without any interference with the primary network. A dynamic and efficient spectrum sensing framework is studied based on advanced algebraic tools. In a CRN, collecting information from all SUs is energy inefficient and computationally complex. A novel sensor selection algorithm based on the compressed sensing theory is devised which is compatible with the algebraic nature of the spectrum sensing problem. Moreover, some state-of-the-art applications in machine learning are investigated. One of the main contributions of the present dissertation is the introduction a versatile data selection algorithm which is referred as spectrum pursuit (SP). The goal of SP is to reduce a big set of data to a small-size subset such that the linear span of the selected data is as close as possible to all data. SP enjoys a low-complexity procedure which enables SP to be extended to more complex selection models. The kernel spectrum pursuit (KSP) facilitates selection from a union of non-linear manifolds. This dissertation investigates a number of important applications in machine learning including fast training of generative adversarial networks (GANs), graph-based label propagation, few shot classification, and fast subspace clustering

    D1.3 -- Short Report on the First Draft Multi-link Channel Model

    Get PDF

    Advanced receivers for distributed cooperation in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are rapidly deployable wireless communications systems, operating with minimal coordination in order to avoid spectral efficiency losses caused by overhead. Cooperative transmission schemes are attractive for MANETs, but the distributed nature of such protocols comes with an increased level of interference, whose impact is further amplified by the need to push the limits of energy and spectral efficiency. Hence, the impact of interference has to be mitigated through with the use PHY layer signal processing algorithms with reasonable computational complexity. Recent advances in iterative digital receiver design techniques exploit approximate Bayesian inference and derivative message passing techniques to improve the capabilities of well-established turbo detectors. In particular, expectation propagation (EP) is a flexible technique which offers attractive complexity-performance trade-offs in situations where conventional belief propagation is limited by computational complexity. Moreover, thanks to emerging techniques in deep learning, such iterative structures are cast into deep detection networks, where learning the algorithmic hyper-parameters further improves receiver performance. In this thesis, EP-based finite-impulse response decision feedback equalizers are designed, and they achieve significant improvements, especially in high spectral efficiency applications, over more conventional turbo-equalization techniques, while having the advantage of being asymptotically predictable. A framework for designing frequency-domain EP-based receivers is proposed, in order to obtain detection architectures with low computational complexity. This framework is theoretically and numerically analysed with a focus on channel equalization, and then it is also extended to handle detection for time-varying channels and multiple-antenna systems. The design of multiple-user detectors and the impact of channel estimation are also explored to understand the capabilities and limits of this framework. Finally, a finite-length performance prediction method is presented for carrying out link abstraction for the EP-based frequency domain equalizer. The impact of accurate physical layer modelling is evaluated in the context of cooperative broadcasting in tactical MANETs, thanks to a flexible MAC-level simulato
    corecore