1,705 research outputs found

    Evidence for sparse synergies in grasping actions

    Get PDF
    Converging evidence shows that hand-actions are controlled at the level of synergies and not single muscles. One intriguing aspect of synergy-based action-representation is that it may be intrinsically sparse and the same synergies can be shared across several distinct types of hand-actions. Here, adopting a normative angle, we consider three hypotheses for hand-action optimal-control: sparse-combination hypothesis (SC) – sparsity in the mapping between synergies and actions - i.e., actions implemented using a sparse combination of synergies; sparse-elements hypothesis (SE) – sparsity in synergy representation – i.e., the mapping between degrees-of-freedom (DoF) and synergies is sparse; double-sparsity hypothesis (DS) – a novel view combining both SC and SE – i.e., both the mapping between DoF and synergies and between synergies and actions are sparse, each action implementing a sparse combination of synergies (as in SC), each using a limited set of DoFs (as in SE). We evaluate these hypotheses using hand kinematic data from six human subjects performing nine different types of reach-to-grasp actions. Our results support DS, suggesting that the best action representation is based on a relatively large set of synergies, each involving a reduced number of degrees-of-freedom, and that distinct sets of synergies may be involved in distinct tasks

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Boosting the Battery Life of Wearables for Health Monitoring Through the Compression of Biosignals

    Get PDF
    Modern wearable Internet of Things (IoT) devices enable the monitoring of vital parameters such as heart or respiratory (RESP) rates, electrocardiography (ECG), photo-plethysmographic (PPG) signals within e-health applications. A common issue of wearable technology is that signal transmission is power-demanding and, as such, devices require frequent battery charges and this poses serious limitations to the continuous monitoring of vitals. To ameliorate this, we advocate the use of lossy signal compression as a means to decrease the data size of the gathered biosignals and, in turn, boost the battery life of wearables and allow for fine-grained and long-term monitoring. Considering 1-D biosignals such as ECG, RESP, and PPG, which are often available from commercial wearable IoT devices, we provide a thorough review of existing biosignal compression algorithms. Besides, we present novel approaches based on online dictionaries, elucidating their operating principles and providing a quantitative assessment of compression, reconstruction and energy consumption performance of all schemes. As we quantify, the most efficient schemes allow reductions in the signal size of up to 100 times, which entail similar reductions in the energy demand, by still keeping the reconstruction error within 4% of the peak-to-peak signal amplitude. Finally, avenues for future research are discussed. © 2014 IEEE

    Inverse and forward modeling tools for biophotonic data

    Get PDF
    Biophotonic data require specific treatments due to the difficulty of directly extracting information from them. Therefore, artificial intelligence tools including machine learning and deep learning brought into play. These tools can be grouped into inverse modeling, preprocessing and data modeling categories. In each of these three categories, one research question was investigated. First, the aim was to develop a method that can acquire the Raman-like spectra from coherent anti-Stokes Raman scattering (CARS) spectra without apriori knowledge. In general, CARS spectra suffer from the non-resonant background (NRB) contribution, and existing methods were commonly implemented to remove it. However, these methods were not able to completely remove the NRB and need additional preprocessing afterward. Therefore, deep learning via the long-short-term memory network was applied and outperformed these existing methods. Then, a denoising technique via deep learning was developed for reconstructing high-quality (HQ) multimodal images (MM) from low-quality (LQ) ones. Since the measurement of HQ MM images is time-consuming, which is impractical for clinical applications, we developed a network, namely incSRCNN, to directly predict HQ images using only LQ ones. This network shows better performance when compared with standard methods. Finally, we intended to improve the accuracy of the classification model in particular when LQ Raman data or Raman data with varying quality are obtained. Therefore, a novel method based on functional data analysis was implemented, which converts the Raman data into functions and then applies functional dimension reduction followed by a classification method. The results showed better performance for the functional approach in comparison with the classical method
    • …
    corecore