2,488 research outputs found

    Sparse tensor product wavelet approximation of singular functions

    Get PDF
    International audienceOn product domains, sparse-grid approximation yields optimal, dimension independent convergence rates when the function that is approximated has L^2-bounded mixed derivatives of a sufficiently high order. We show that the solution of Poisson's equation on the n-dimensional hypercube with Dirichlet boundary conditions and smooth right-hand side generally does not satisfy this condition. As suggested by P.-A. Nitsche in [Constr. Approx., 21(1) (2005), pp. 63--81], the regularity conditions can be relaxed to corresponding ones in weighted L^2 spaces when the sparse-grid approach is combined with local refinement of the set of one-dimensional wavelets indices towards the end points. In this paper, we prove that for general smooth right-hand sides, the solution of Poisson's problem satisfies these relaxed regularity conditions in any space dimension. Furthermore, since we remove log-factors from the energy-error estimates from Nitsche's work, we show that in any space dimension, locally refined sparse-grid approximation yields the optimal, dimension independent convergence rate

    Adaptive Low-Rank Methods for Problems on Sobolev Spaces with Error Control in L2L_2

    Full text link
    Low-rank tensor methods for the approximate solution of second-order elliptic partial differential equations in high dimensions have recently attracted significant attention. A critical issue is to rigorously bound the error of such approximations, not with respect to a fixed finite dimensional discrete background problem, but with respect to the exact solution of the continuous problem. While the energy norm offers a natural error measure corresponding to the underlying operator considered as an isomorphism from the energy space onto its dual, this norm requires a careful treatment in its interplay with the tensor structure of the problem. In this paper we build on our previous work on energy norm-convergent subspace-based tensor schemes contriving, however, a modified formulation which now enforces convergence only in L2L_2. In order to still be able to exploit the mapping properties of elliptic operators, a crucial ingredient of our approach is the development and analysis of a suitable asymmetric preconditioning scheme. We provide estimates for the computational complexity of the resulting method in terms of the solution error and study the practical performance of the scheme in numerical experiments. In both regards, we find that controlling solution errors in this weaker norm leads to substantial simplifications and to a reduction of the actual numerical work required for a certain error tolerance.Comment: 26 pages, 7 figure

    A literature survey of low-rank tensor approximation techniques

    Full text link
    During the last years, low-rank tensor approximation has been established as a new tool in scientific computing to address large-scale linear and multilinear algebra problems, which would be intractable by classical techniques. This survey attempts to give a literature overview of current developments in this area, with an emphasis on function-related tensors

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlogn)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3logL)O(L^3 \log L) scaling by the Ewald-type approaches

    Compressive Space-Time Galerkin Discretizations of Parabolic Partial Differential Equations

    Get PDF
    We study linear parabolic initial-value problems in a space-time variational formulation based on fractional calculus. This formulation uses "time derivatives of order one half" on the bi-infinite time axis. We show that for linear, parabolic initial-boundary value problems on (0,)(0,\infty), the corresponding bilinear form admits an inf-sup condition with sparse tensor product trial and test function spaces. We deduce optimality of compressive, space-time Galerkin discretizations, where stability of Galerkin approximations is implied by the well-posedness of the parabolic operator equation. The variational setting adopted here admits more general Riesz bases than previous work; in particular, no stability in negative order Sobolev spaces on the spatial or temporal domains is required of the Riesz bases accommodated by the present formulation. The trial and test spaces are based on Sobolev spaces of equal order 1/21/2 with respect to the temporal variable. Sparse tensor products of multi-level decompositions of the spatial and temporal spaces in Galerkin discretizations lead to large, non-symmetric linear systems of equations. We prove that their condition numbers are uniformly bounded with respect to the discretization level. In terms of the total number of degrees of freedom, the convergence orders equal, up to logarithmic terms, those of best NN-term approximations of solutions of the corresponding elliptic problems.Comment: 26 page

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train
    corecore