18,869 research outputs found

    L0L_0-ARM: Network Sparsification via Stochastic Binary Optimization

    Full text link
    We consider network sparsification as an L0L_0-norm regularized binary optimization problem, where each unit of a neural network (e.g., weight, neuron, or channel, etc.) is attached with a stochastic binary gate, whose parameters are jointly optimized with original network parameters. The Augment-Reinforce-Merge (ARM), a recently proposed unbiased gradient estimator, is investigated for this binary optimization problem. Compared to the hard concrete gradient estimator from Louizos et al., ARM demonstrates superior performance of pruning network architectures while retaining almost the same accuracies of baseline methods. Similar to the hard concrete estimator, ARM also enables conditional computation during model training but with improved effectiveness due to the exact binary stochasticity. Thanks to the flexibility of ARM, many smooth or non-smooth parametric functions, such as scaled sigmoid or hard sigmoid, can be used to parameterize this binary optimization problem and the unbiasness of the ARM estimator is retained, while the hard concrete estimator has to rely on the hard sigmoid function to achieve conditional computation and thus accelerated training. Extensive experiments on multiple public datasets demonstrate state-of-the-art pruning rates with almost the same accuracies of baseline methods. The resulting algorithm L0L_0-ARM sparsifies the Wide-ResNet models on CIFAR-10 and CIFAR-100 while the hard concrete estimator cannot. The code is public available at https://github.com/leo-yangli/l0-arm.Comment: Published as a conference paper at ECML 201

    Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data

    Get PDF
    While nonlinear stochastic partial differential equations arise naturally in spatiotemporal modeling, inference for such systems often faces two major challenges: sparse noisy data and ill-posedness of the inverse problem of parameter estimation. To overcome the challenges, we introduce a strongly regularized posterior by normalizing the likelihood and by imposing physical constraints through priors of the parameters and states. We investigate joint parameter-state estimation by the regularized posterior in a physically motivated nonlinear stochastic energy balance model (SEBM) for paleoclimate reconstruction. The high-dimensional posterior is sampled by a particle Gibbs sampler that combines MCMC with an optimal particle filter exploiting the structure of the SEBM. In tests using either Gaussian or uniform priors based on the physical range of parameters, the regularized posteriors overcome the ill-posedness and lead to samples within physical ranges, quantifying the uncertainty in estimation. Due to the ill-posedness and the regularization, the posterior of parameters presents a relatively large uncertainty, and consequently, the maximum of the posterior, which is the minimizer in a variational approach, can have a large variation. In contrast, the posterior of states generally concentrates near the truth, substantially filtering out observation noise and reducing uncertainty in the unconstrained SEBM

    Bayesian Structure Learning for Markov Random Fields with a Spike and Slab Prior

    Get PDF
    In recent years a number of methods have been developed for automatically learning the (sparse) connectivity structure of Markov Random Fields. These methods are mostly based on L1-regularized optimization which has a number of disadvantages such as the inability to assess model uncertainty and expensive cross-validation to find the optimal regularization parameter. Moreover, the model's predictive performance may degrade dramatically with a suboptimal value of the regularization parameter (which is sometimes desirable to induce sparseness). We propose a fully Bayesian approach based on a "spike and slab" prior (similar to L0 regularization) that does not suffer from these shortcomings. We develop an approximate MCMC method combining Langevin dynamics and reversible jump MCMC to conduct inference in this model. Experiments show that the proposed model learns a good combination of the structure and parameter values without the need for separate hyper-parameter tuning. Moreover, the model's predictive performance is much more robust than L1-based methods with hyper-parameter settings that induce highly sparse model structures.Comment: Accepted in the Conference on Uncertainty in Artificial Intelligence (UAI), 201
    • …
    corecore