7,127 research outputs found

    Greedy low-rank algorithm for spatial connectome regression

    Get PDF
    Recovering brain connectivity from tract tracing data is an important computational problem in the neurosciences. Mesoscopic connectome reconstruction was previously formulated as a structured matrix regression problem (Harris et al., 2016), but existing techniques do not scale to the whole-brain setting. The corresponding matrix equation is challenging to solve due to large scale, ill-conditioning, and a general form that lacks a convergent splitting. We propose a greedy low-rank algorithm for connectome reconstruction problem in very high dimensions. The algorithm approximates the solution by a sequence of rank-one updates which exploit the sparse and positive definite problem structure. This algorithm was described previously (Kressner and Sirkovi\'c, 2015) but never implemented for this connectome problem, leading to a number of challenges. We have had to design judicious stopping criteria and employ efficient solvers for the three main sub-problems of the algorithm, including an efficient GPU implementation that alleviates the main bottleneck for large datasets. The performance of the method is evaluated on three examples: an artificial "toy" dataset and two whole-cortex instances using data from the Allen Mouse Brain Connectivity Atlas. We find that the method is significantly faster than previous methods and that moderate ranks offer good approximation. This speedup allows for the estimation of increasingly large-scale connectomes across taxa as these data become available from tracing experiments. The data and code are available online

    A Unique "Nonnegative" Solution to an Underdetermined System: from Vectors to Matrices

    Full text link
    This paper investigates the uniqueness of a nonnegative vector solution and the uniqueness of a positive semidefinite matrix solution to underdetermined linear systems. A vector solution is the unique solution to an underdetermined linear system only if the measurement matrix has a row-span intersecting the positive orthant. Focusing on two types of binary measurement matrices, Bernoulli 0-1 matrices and adjacency matrices of general expander graphs, we show that, in both cases, the support size of a unique nonnegative solution can grow linearly, namely O(n), with the problem dimension n. We also provide closed-form characterizations of the ratio of this support size to the signal dimension. For the matrix case, we show that under a necessary and sufficient condition for the linear compressed observations operator, there will be a unique positive semidefinite matrix solution to the compressed linear observations. We further show that a randomly generated Gaussian linear compressed observations operator will satisfy this condition with overwhelmingly high probability

    Sequential Dimensionality Reduction for Extracting Localized Features

    Full text link
    Linear dimensionality reduction techniques are powerful tools for image analysis as they allow the identification of important features in a data set. In particular, nonnegative matrix factorization (NMF) has become very popular as it is able to extract sparse, localized and easily interpretable features by imposing an additive combination of nonnegative basis elements. Nonnegative matrix underapproximation (NMU) is a closely related technique that has the advantage to identify features sequentially. In this paper, we propose a variant of NMU that is particularly well suited for image analysis as it incorporates the spatial information, that is, it takes into account the fact that neighboring pixels are more likely to be contained in the same features, and favors the extraction of localized features by looking for sparse basis elements. We show that our new approach competes favorably with comparable state-of-the-art techniques on synthetic, facial and hyperspectral image data sets.Comment: 24 pages, 12 figures. New numerical experiments on synthetic data sets, discussion about the convergenc
    corecore