284 research outputs found

    Experience-Based Planning with Sparse Roadmap Spanners

    Full text link
    We present an experienced-based planning framework called Thunder that learns to reduce computation time required to solve high-dimensional planning problems in varying environments. The approach is especially suited for large configuration spaces that include many invariant constraints, such as those found with whole body humanoid motion planning. Experiences are generated using probabilistic sampling and stored in a sparse roadmap spanner (SPARS), which provides asymptotically near-optimal coverage of the configuration space, making storing, retrieving, and repairing past experiences very efficient with respect to memory and time. The Thunder framework improves upon past experience-based planners by storing experiences in a graph rather than in individual paths, eliminating redundant information, providing more opportunities for path reuse, and providing a theoretical limit to the size of the experience graph. These properties also lead to improved handling of dynamically changing environments, reasoning about optimal paths, and reducing query resolution time. The approach is demonstrated on a 30 degrees of freedom humanoid robot and compared with the Lightning framework, an experience-based planner that uses individual paths to store past experiences. In environments with variable obstacles and stability constraints, experiments show that Thunder is on average an order of magnitude faster than Lightning and planning from scratch. Thunder also uses 98.8% less memory to store its experiences after 10,000 trials when compared to Lightning. Our framework is implemented and freely available in the Open Motion Planning Library.Comment: Submitted to ICRA 201

    Exact Computation of a Manifold Metric, via Lipschitz Embeddings and Shortest Paths on a Graph

    Full text link
    Data-sensitive metrics adapt distances locally based the density of data points with the goal of aligning distances and some notion of similarity. In this paper, we give the first exact algorithm for computing a data-sensitive metric called the nearest neighbor metric. In fact, we prove the surprising result that a previously published 33-approximation is an exact algorithm. The nearest neighbor metric can be viewed as a special case of a density-based distance used in machine learning, or it can be seen as an example of a manifold metric. Previous computational research on such metrics despaired of computing exact distances on account of the apparent difficulty of minimizing over all continuous paths between a pair of points. We leverage the exact computation of the nearest neighbor metric to compute sparse spanners and persistent homology. We also explore the behavior of the metric built from point sets drawn from an underlying distribution and consider the more general case of inputs that are finite collections of path-connected compact sets. The main results connect several classical theories such as the conformal change of Riemannian metrics, the theory of positive definite functions of Schoenberg, and screw function theory of Schoenberg and Von Neumann. We develop novel proof techniques based on the combination of screw functions and Lipschitz extensions that may be of independent interest.Comment: 15 page

    Asymptotically near-optimal RRT for fast, high-quality, motion planning

    Full text link
    We present Lower Bound Tree-RRT (LBT-RRT), a single-query sampling-based algorithm that is asymptotically near-optimal. Namely, the solution extracted from LBT-RRT converges to a solution that is within an approximation factor of 1+epsilon of the optimal solution. Our algorithm allows for a continuous interpolation between the fast RRT algorithm and the asymptotically optimal RRT* and RRG algorithms. When the approximation factor is 1 (i.e., no approximation is allowed), LBT-RRT behaves like RRG. When the approximation factor is unbounded, LBT-RRT behaves like RRT. In between, LBT-RRT is shown to produce paths that have higher quality than RRT would produce and run faster than RRT* would run. This is done by maintaining a tree which is a sub-graph of the RRG roadmap and a second, auxiliary graph, which we call the lower-bound graph. The combination of the two roadmaps, which is faster to maintain than the roadmap maintained by RRT*, efficiently guarantees asymptotic near-optimality. We suggest to use LBT-RRT for high-quality, anytime motion planning. We demonstrate the performance of the algorithm for scenarios ranging from 3 to 12 degrees of freedom and show that even for small approximation factors, the algorithm produces high-quality solutions (comparable to RRG and RRT*) with little running-time overhead when compared to RRT
    • …
    corecore