1,726 research outputs found

    Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering

    Full text link
    User information needs vary significantly across different tasks, and therefore their queries will also differ considerably in their expressiveness and semantics. Many studies have been proposed to model such query diversity by obtaining query types and building query-dependent ranking models. These studies typically require either a labeled query dataset or clicks from multiple users aggregated over the same document. These techniques, however, are not applicable when manual query labeling is not viable, and aggregated clicks are unavailable due to the private nature of the document collection, e.g., in email search scenarios. In this paper, we study how to obtain query type in an unsupervised fashion and how to incorporate this information into query-dependent ranking models. We first develop a hierarchical clustering algorithm based on truncated SVD and varimax rotation to obtain coarse-to-fine query types. Then, we study three query-dependent ranking models, including two neural models that leverage query type information as additional features, and one novel multi-task neural model that views query type as the label for the auxiliary query cluster prediction task. This multi-task model is trained to simultaneously rank documents and predict query types. Our experiments on tens of millions of real-world email search queries demonstrate that the proposed multi-task model can significantly outperform the baseline neural ranking models, which either do not incorporate query type information or just simply feed query type as an additional feature.Comment: CIKM 201

    Distributed Dictionary Learning

    Full text link
    The paper studies distributed Dictionary Learning (DL) problems where the learning task is distributed over a multi-agent network with time-varying (nonsymmetric) connectivity. This formulation is relevant, for instance, in big-data scenarios where massive amounts of data are collected/stored in different spatial locations and it is unfeasible to aggregate and/or process all the data in a fusion center, due to resource limitations, communication overhead or privacy considerations. We develop a general distributed algorithmic framework for the (nonconvex) DL problem and establish its asymptotic convergence. The new method hinges on Successive Convex Approximation (SCA) techniques coupled with i) a gradient tracking mechanism instrumental to locally estimate the missing global information; and ii) a consensus step, as a mechanism to distribute the computations among the agents. To the best of our knowledge, this is the first distributed algorithm with provable convergence for the DL problem and, more in general, bi-convex optimization problems over (time-varying) directed graphs
    • …
    corecore