7,007 research outputs found

    Machine Learning for Neuroimaging with Scikit-Learn

    Get PDF
    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.Comment: Frontiers in neuroscience, Frontiers Research Foundation, 2013, pp.1

    An information theoretic characterisation of auditory encoding.

    Get PDF
    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content

    Sparse Predictive Structure of Deconvolved Functional Brain Networks

    Full text link
    The functional and structural representation of the brain as a complex network is marked by the fact that the comparison of noisy and intrinsically correlated high-dimensional structures between experimental conditions or groups shuns typical mass univariate methods. Furthermore most network estimation methods cannot distinguish between real and spurious correlation arising from the convolution due to nodes' interaction, which thus introduces additional noise in the data. We propose a machine learning pipeline aimed at identifying multivariate differences between brain networks associated to different experimental conditions. The pipeline (1) leverages the deconvolved individual contribution of each edge and (2) maps the task into a sparse classification problem in order to construct the associated "sparse deconvolved predictive network", i.e., a graph with the same nodes of those compared but whose edge weights are defined by their relevance for out of sample predictions in classification. We present an application of the proposed method by decoding the covert attention direction (left or right) based on the single-trial functional connectivity matrix extracted from high-frequency magnetoencephalography (MEG) data. Our results demonstrate how network deconvolution matched with sparse classification methods outperforms typical approaches for MEG decoding

    Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    Get PDF
    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems
    corecore