47,915 research outputs found

    Latent Gaussian processes for distribution estimation of multivariate categorical data

    Get PDF
    Multivariate categorical data occur in many applications of machine learning. One of the main difficulties with these vectors of categorical variables is sparsity. The number of possible observations grows exponentially with vector length, but dataset diversity might be poor in comparison. Recent models have gained significant improvement in supervised tasks with this data. These models embed observations in a continuous space to capture similarities between them. Building on these ideas we propose a Bayesian model for the unsupervised task of distribution estimation of multivariate categorical data. We model vectors of categorical variables as generated from a non-linear transformation of a continuous latent space. Non-linearity captures multi-modality in the distribution. The continuous representation addresses sparsity. Our model ties together many existing models, linking the linear categorical latent Gaussian model, the Gaussian process latent variable model, and Gaussian process classification. We derive inference for our model based on recent developments in sampling based variational inference. We show empirically that the model outperforms its linear and discrete counterparts in imputation tasks of sparse data.YG is supported by the Google European fellowship in Machine Learning.This is the final version of the article. It first appeared from Microtome Publishing via http://jmlr.org/proceedings/papers/v37/gala15.htm

    Identifying Mixtures of Mixtures Using Bayesian Estimation

    Get PDF
    The use of a finite mixture of normal distributions in model-based clustering allows to capture non-Gaussian data clusters. However, identifying the clusters from the normal components is challenging and in general either achieved by imposing constraints on the model or by using post-processing procedures. Within the Bayesian framework we propose a different approach based on sparse finite mixtures to achieve identifiability. We specify a hierarchical prior where the hyperparameters are carefully selected such that they are reflective of the cluster structure aimed at. In addition this prior allows to estimate the model using standard MCMC sampling methods. In combination with a post-processing approach which resolves the label switching issue and results in an identified model, our approach allows to simultaneously (1) determine the number of clusters, (2) flexibly approximate the cluster distributions in a semi-parametric way using finite mixtures of normals and (3) identify cluster-specific parameters and classify observations. The proposed approach is illustrated in two simulation studies and on benchmark data sets.Comment: 49 page

    From here to infinity - sparse finite versus Dirichlet process mixtures in model-based clustering

    Get PDF
    In model-based-clustering mixture models are used to group data points into clusters. A useful concept introduced for Gaussian mixtures by Malsiner Walli et al (2016) are sparse finite mixtures, where the prior distribution on the weight distribution of a mixture with KK components is chosen in such a way that a priori the number of clusters in the data is random and is allowed to be smaller than KK with high probability. The number of cluster is then inferred a posteriori from the data. The present paper makes the following contributions in the context of sparse finite mixture modelling. First, it is illustrated that the concept of sparse finite mixture is very generic and easily extended to cluster various types of non-Gaussian data, in particular discrete data and continuous multivariate data arising from non-Gaussian clusters. Second, sparse finite mixtures are compared to Dirichlet process mixtures with respect to their ability to identify the number of clusters. For both model classes, a random hyper prior is considered for the parameters determining the weight distribution. By suitable matching of these priors, it is shown that the choice of this hyper prior is far more influential on the cluster solution than whether a sparse finite mixture or a Dirichlet process mixture is taken into consideration.Comment: Accepted versio

    Compositional Model based Fisher Vector Coding for Image Classification

    Full text link
    Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) to depict the generation process of local features. However, the representative power of the GMM could be limited because it essentially assumes that local features can be characterized by a fixed number of feature prototypes and the number of prototypes is usually small in FVC. To handle this limitation, in this paper we break the convention which assumes that a local feature is drawn from one of few Gaussian distributions. Instead, we adopt a compositional mechanism which assumes that a local feature is drawn from a Gaussian distribution whose mean vector is composed as the linear combination of multiple key components and the combination weight is a latent random variable. In this way, we can greatly enhance the representative power of the generative model of FVC. To implement our idea, we designed two particular generative models with such a compositional mechanism.Comment: Fixed typos. 16 pages. Appearing in IEEE T. Pattern Analysis and Machine Intelligence (TPAMI
    corecore