25,163 research outputs found

    Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis

    Full text link
    The past decade has seen an explosion in the amount of digital information stored in electronic health records (EHR). While primarily designed for archiving patient clinical information and administrative healthcare tasks, many researchers have found secondary use of these records for various clinical informatics tasks. Over the same period, the machine learning community has seen widespread advances in deep learning techniques, which also have been successfully applied to the vast amount of EHR data. In this paper, we review these deep EHR systems, examining architectures, technical aspects, and clinical applications. We also identify shortcomings of current techniques and discuss avenues of future research for EHR-based deep learning.Comment: Accepted for publication with Journal of Biomedical and Health Informatics: http://ieeexplore.ieee.org/abstract/document/8086133

    Bayesian nonparametric sparse VAR models

    Get PDF
    High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.Comment: Forthcoming in "Journal of Econometrics" ---- Revised Version of the paper "Bayesian nonparametric Seemingly Unrelated Regression Models" ---- Supplementary Material available on reques

    Automatic structure estimation of predictive models for symptom development

    Full text link
    Online mental health treatment has the premise to meet the increasing demand for mental health treatment at a lower cost than traditional treatment. However, online treatment suffers from high drop-out rates, which might negate their cost effectiveness. Predictive models might aid in early identification of deviating clients which allows to target them directly to prevent drop-out and improve treatment outcomes. We propose a two-staged multi-objective optimization process to automatically infer model structures based on ecological momentary assessment for prediction of future symptom development. The proposed multi-objective optimization approach results in a temporal-causal network model with the best prediction performance for each concept. This allows for a selection of a disorder-specific model structure based on the envisioned field of application

    Regularized estimation in sparse high-dimensional time series models

    Full text link
    Many scientific and economic problems involve the analysis of high-dimensional time series datasets. However, theoretical studies in high-dimensional statistics to date rely primarily on the assumption of independent and identically distributed (i.i.d.) samples. In this work, we focus on stable Gaussian processes and investigate the theoretical properties of â„“1\ell _1-regularized estimates in two important statistical problems in the context of high-dimensional time series: (a) stochastic regression with serially correlated errors and (b) transition matrix estimation in vector autoregressive (VAR) models. We derive nonasymptotic upper bounds on the estimation errors of the regularized estimates and establish that consistent estimation under high-dimensional scaling is possible via â„“1\ell_1-regularization for a large class of stable processes under sparsity constraints. A key technical contribution of the work is to introduce a measure of stability for stationary processes using their spectral properties that provides insight into the effect of dependence on the accuracy of the regularized estimates. With this proposed stability measure, we establish some useful deviation bounds for dependent data, which can be used to study several important regularized estimates in a time series setting.Comment: Published at http://dx.doi.org/10.1214/15-AOS1315 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Connecting the Dots: Identifying Network Structure via Graph Signal Processing

    Full text link
    Network topology inference is a prominent problem in Network Science. Most graph signal processing (GSP) efforts to date assume that the underlying network is known, and then analyze how the graph's algebraic and spectral characteristics impact the properties of the graph signals of interest. Such an assumption is often untenable beyond applications dealing with e.g., directly observable social and infrastructure networks; and typically adopted graph construction schemes are largely informal, distinctly lacking an element of validation. This tutorial offers an overview of graph learning methods developed to bridge the aforementioned gap, by using information available from graph signals to infer the underlying graph topology. Fairly mature statistical approaches are surveyed first, where correlation analysis takes center stage along with its connections to covariance selection and high-dimensional regression for learning Gaussian graphical models. Recent GSP-based network inference frameworks are also described, which postulate that the network exists as a latent underlying structure, and that observations are generated as a result of a network process defined in such a graph. A number of arguably more nascent topics are also briefly outlined, including inference of dynamic networks, nonlinear models of pairwise interaction, as well as extensions to directed graphs and their relation to causal inference. All in all, this paper introduces readers to challenges and opportunities for signal processing research in emerging topic areas at the crossroads of modeling, prediction, and control of complex behavior arising in networked systems that evolve over time

    Sparse Bayesian vector autoregressions in huge dimensions

    Get PDF
    We develop a Bayesian vector autoregressive (VAR) model with multivariate stochastic volatility that is capable of handling vast dimensional information sets. Three features are introduced to permit reliable estimation of the model. First, we assume that the reduced-form errors in the VAR feature a factor stochastic volatility structure, allowing for conditional equation-by-equation estimation. Second, we apply recently developed global-local shrinkage priors to the VAR coefficients to cure the curse of dimensionality. Third, we utilize recent innovations to efficiently sample from high-dimensional multivariate Gaussian distributions. This makes simulation-based fully Bayesian inference feasible when the dimensionality is large but the time series length is moderate. We demonstrate the merits of our approach in an extensive simulation study and apply the model to US macroeconomic data to evaluate its forecasting capabilities

    Machine Learning Methods Economists Should Know About

    Full text link
    We discuss the relevance of the recent Machine Learning (ML) literature for economics and econometrics. First we discuss the differences in goals, methods and settings between the ML literature and the traditional econometrics and statistics literatures. Then we discuss some specific methods from the machine learning literature that we view as important for empirical researchers in economics. These include supervised learning methods for regression and classification, unsupervised learning methods, as well as matrix completion methods. Finally, we highlight newly developed methods at the intersection of ML and econometrics, methods that typically perform better than either off-the-shelf ML or more traditional econometric methods when applied to particular classes of problems, problems that include causal inference for average treatment effects, optimal policy estimation, and estimation of the counterfactual effect of price changes in consumer choice models

    Lasso Guarantees for Time Series Estimation Under Subgaussian Tails and β \beta -Mixing

    Full text link
    Many theoretical results on estimation of high dimensional time series require specifying an underlying data generating model (DGM). Instead, along the footsteps of~\cite{wong2017lasso}, this paper relies only on (strict) stationarity and β \beta -mixing condition to establish consistency of lasso when data comes from a β\beta-mixing process with marginals having subgaussian tails. Because of the general assumptions, the data can come from DGMs different than standard time series models such as VAR or ARCH. When the true DGM is not VAR, the lasso estimates correspond to those of the best linear predictors using the past observations. We establish non-asymptotic inequalities for estimation and prediction errors of the lasso estimates. Together with~\cite{wong2017lasso}, we provide lasso guarantees that cover full spectrum of the parameters in specifications of β \beta -mixing subgaussian time series. Applications of these results potentially extend to non-Gaussian, non-Markovian and non-linear times series models as the examples we provide demonstrate. In order to prove our results, we derive a novel Hanson-Wright type concentration inequality for β\beta-mixing subgaussian random vectors that may be of independent interest

    Nonnegative Restricted Boltzmann Machines for Parts-based Representations Discovery and Predictive Model Stabilization

    Full text link
    The success of any machine learning system depends critically on effective representations of data. In many cases, it is desirable that a representation scheme uncovers the parts-based, additive nature of the data. Of current representation learning schemes, restricted Boltzmann machines (RBMs) have proved to be highly effective in unsupervised settings. However, when it comes to parts-based discovery, RBMs do not usually produce satisfactory results. We enhance such capacity of RBMs by introducing nonnegativity into the model weights, resulting in a variant called nonnegative restricted Boltzmann machine (NRBM). The NRBM produces not only controllable decomposition of data into interpretable parts but also offers a way to estimate the intrinsic nonlinear dimensionality of data, and helps to stabilize linear predictive models. We demonstrate the capacity of our model on applications such as handwritten digit recognition, face recognition, document classification and patient readmission prognosis. The decomposition quality on images is comparable with or better than what produced by the nonnegative matrix factorization (NMF), and the thematic features uncovered from text are qualitatively interpretable in a similar manner to that of the latent Dirichlet allocation (LDA). The stability performance of feature selection on medical data is better than RBM and competitive with NMF. The learned features, when used for classification, are more discriminative than those discovered by both NMF and LDA and comparable with those by RBM

    Genesis of Basic and Multi-Layer Echo State Network Recurrent Autoencoders for Efficient Data Representations

    Full text link
    It is a widely accepted fact that data representations intervene noticeably in machine learning tools. The more they are well defined the better the performance results are. Feature extraction-based methods such as autoencoders are conceived for finding more accurate data representations from the original ones. They efficiently perform on a specific task in terms of 1) high accuracy, 2) large short term memory and 3) low execution time. Echo State Network (ESN) is a recent specific kind of Recurrent Neural Network which presents very rich dynamics thanks to its reservoir-based hidden layer. It is widely used in dealing with complex non-linear problems and it has outperformed classical approaches in a number of tasks including regression, classification, etc. In this paper, the noticeable dynamism and the large memory provided by ESN and the strength of Autoencoders in feature extraction are gathered within an ESN Recurrent Autoencoder (ESN-RAE). In order to bring up sturdier alternative to conventional reservoir-based networks, not only single layer basic ESN is used as an autoencoder, but also Multi-Layer ESN (ML-ESN-RAE). The new features, once extracted from ESN's hidden layer, are applied to classification tasks. The classification rates rise considerably compared to those obtained when applying the original data features. An accuracy-based comparison is performed between the proposed recurrent AEs and two variants of an ELM feed-forward AEs (Basic and ML) in both of noise free and noisy environments. The empirical study reveals the main contribution of recurrent connections in improving the classification performance results.Comment: 13 pages, 9 figure
    • …
    corecore