48,592 research outputs found

    Sparse Regular Expression Matching

    Full text link
    We present the first algorithm for regular expression matching that can take advantage of sparsity in the input instance. Our main result is a new algorithm that solves regular expression matching in O(ΔloglognmΔ+n+m)O\left(\Delta \log \log \frac{nm}{\Delta} + n + m\right) time, where mm is the number of positions in the regular expression, nn is the length of the string, and Δ\Delta is the \emph{density} of the instance, defined as the total number of active states in a simulation of the position automaton. This measure is a lower bound on the total number of active states in simulations of all classic polynomial sized finite automata. Our bound improves the best known bounds for regular expression matching by almost a linear factor in the density of the problem. The key component in the result is a novel linear space representation of the position automaton that supports state-set transition computation in near-linear time in the size of the input and output state sets

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Percolation on sparse random graphs with given degree sequence

    Full text link
    We study the two most common types of percolation process on a sparse random graph with a given degree sequence. Namely, we examine first a bond percolation process where the edges of the graph are retained with probability p and afterwards we focus on site percolation where the vertices are retained with probability p. We establish critical values for p above which a giant component emerges in both cases. Moreover, we show that in fact these coincide. As a special case, our results apply to power law random graphs. We obtain rigorous proofs for formulas derived by several physicists for such graphs.Comment: 20 page
    corecore