35,580 research outputs found

    Sparse Recovery With Graph Constraints

    Get PDF
    Sparse recovery can recover sparse signals from a set of underdetermined linear measurements. Motivated by the need to monitor the key characteristics of large-scale networks from a limited number of measurements, this paper addresses the problem of recovering sparse signals in the presence of network topological constraints. Unlike conventional sparse recovery where a measurement can contain any subset of the unknown variables, we use a graph to characterize the topological constraints and allow an additive measurement over nodes (unknown variables) only if they induce a connected subgraph. We provide explicit measurement constructions for several special graphs, and the number of measurements by our construction is less than that needed by existing random constructions. Moreover, our construction for a line network is provably optimal in the sense that it requires the minimum number of measurements. A measurement construction algorithm for general graphs is also proposed and evaluated. For any given graph G with n nodes, we derive bounds of the minimum number of measurements needed to recover any k-sparse vector over G (M_(k,n)^G). Using the Erdõs-Rényi random graph as an example, we characterize the dependence of M_(k,n)^G on the graph structure. This paper suggests that M_(k,n)^G may serve as a graph connectivity metric

    Discovery of low-dimensional structure in high-dimensional inference problems

    Full text link
    Many learning and inference problems involve high-dimensional data such as images, video or genomic data, which cannot be processed efficiently using conventional methods due to their dimensionality. However, high-dimensional data often exhibit an inherent low-dimensional structure, for instance they can often be represented sparsely in some basis or domain. The discovery of an underlying low-dimensional structure is important to develop more robust and efficient analysis and processing algorithms. The first part of the dissertation investigates the statistical complexity of sparse recovery problems, including sparse linear and nonlinear regression models, feature selection and graph estimation. We present a framework that unifies sparse recovery problems and construct an analogy to channel coding in classical information theory. We perform an information-theoretic analysis to derive bounds on the number of samples required to reliably recover sparsity patterns independent of any specific recovery algorithm. In particular, we show that sample complexity can be tightly characterized using a mutual information formula similar to channel coding results. Next, we derive major extensions to this framework, including dependent input variables and a lower bound for sequential adaptive recovery schemes, which helps determine whether adaptivity provides performance gains. We compute statistical complexity bounds for various sparse recovery problems, showing our analysis improves upon the existing bounds and leads to intuitive results for new applications. In the second part, we investigate methods for improving the computational complexity of subgraph detection in graph-structured data, where we aim to discover anomalous patterns present in a connected subgraph of a given graph. This problem arises in many applications such as detection of network intrusions, community detection, detection of anomalous events in surveillance videos or disease outbreaks. Since optimization over connected subgraphs is a combinatorial and computationally difficult problem, we propose a convex relaxation that offers a principled approach to incorporating connectivity and conductance constraints on candidate subgraphs. We develop a novel nearly-linear time algorithm to solve the relaxed problem, establish convergence and consistency guarantees and demonstrate its feasibility and performance with experiments on real networks

    Compressed sensing using sparse binary measurements: a rateless coding perspective

    Get PDF
    Compressed Sensing (CS) methods using sparse binary measurement matrices and iterative message-passing re- covery procedures have been recently investigated due to their low computational complexity and excellent performance. Drawing much of inspiration from sparse-graph codes such as Low-Density Parity-Check (LDPC) codes, these studies use analytical tools from modern coding theory to analyze CS solutions. In this paper, we consider and systematically analyze the CS setup inspired by a class of efficient, popular and flexible sparse-graph codes called rateless codes. The proposed rateless CS setup is asymptotically analyzed using tools such as Density Evolution and EXIT charts and fine-tuned using degree distribution optimization techniques

    Distributed Low-rank Subspace Segmentation

    Full text link
    Vision problems ranging from image clustering to motion segmentation to semi-supervised learning can naturally be framed as subspace segmentation problems, in which one aims to recover multiple low-dimensional subspaces from noisy and corrupted input data. Low-Rank Representation (LRR), a convex formulation of the subspace segmentation problem, is provably and empirically accurate on small problems but does not scale to the massive sizes of modern vision datasets. Moreover, past work aimed at scaling up low-rank matrix factorization is not applicable to LRR given its non-decomposable constraints. In this work, we propose a novel divide-and-conquer algorithm for large-scale subspace segmentation that can cope with LRR's non-decomposable constraints and maintains LRR's strong recovery guarantees. This has immediate implications for the scalability of subspace segmentation, which we demonstrate on a benchmark face recognition dataset and in simulations. We then introduce novel applications of LRR-based subspace segmentation to large-scale semi-supervised learning for multimedia event detection, concept detection, and image tagging. In each case, we obtain state-of-the-art results and order-of-magnitude speed ups

    Learning Graphs from Linear Measurements: Fundamental Trade-offs and Applications

    Get PDF
    We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We present a sparsity characterization for distributions of random graphs (that are allowed to contain high-degree nodes), based on which we study fundamental trade-offs between the number of measurements, the complexity of the graph class, and the probability of error. We first derive a necessary condition on the number of measurements. Then, by considering a three-stage recovery scheme, we give a sufficient condition for recovery. Furthermore, assuming the measurements are Gaussian IID, we prove upper and lower bounds on the (worst-case) sample complexity for both noisy and noiseless recovery. In the special cases of the uniform distribution on trees with n nodes and the Erdős-Rényi (n,p) class, the fundamental trade-offs are tight up to multiplicative factors with noiseless measurements. In addition, for practical applications, we design and implement a polynomial-time (in n ) algorithm based on the three-stage recovery scheme. Experiments show that the heuristic algorithm outperforms basis pursuit on star graphs. We apply the heuristic algorithm to learn admittance matrices in electric grids. Simulations for several canonical graph classes and IEEE power system test cases demonstrate the effectiveness and robustness of the proposed algorithm for parameter reconstruction
    corecore