10,147 research outputs found

    Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case

    Full text link
    We demonstrate that, in the classical non-stochastic regret minimization problem with dd decisions, gains and losses to be respectively maximized or minimized are fundamentally different. Indeed, by considering the additional sparsity assumption (at each stage, at most ss decisions incur a nonzero outcome), we derive optimal regret bounds of different orders. Specifically, with gains, we obtain an optimal regret guarantee after TT stages of order Tlogs\sqrt{T\log s}, so the classical dependency in the dimension is replaced by the sparsity size. With losses, we provide matching upper and lower bounds of order Tslog(d)/d\sqrt{Ts\log(d)/d}, which is decreasing in dd. Eventually, we also study the bandit setting, and obtain an upper bound of order Tslog(d/s)\sqrt{Ts\log (d/s)} when outcomes are losses. This bound is proven to be optimal up to the logarithmic factor log(d/s)\sqrt{\log(d/s)}

    Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization

    Full text link
    Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation. We improve upon known results and obtain tight minimax complexity estimates for various function classes

    Efficient Numerical Methods to Solve Sparse Linear Equations with Application to PageRank

    Full text link
    In this paper, we propose three methods to solve the PageRank problem for the transition matrices with both row and column sparsity. Our methods reduce the PageRank problem to the convex optimization problem over the simplex. The first algorithm is based on the gradient descent in L1 norm instead of the Euclidean one. The second algorithm extends the Frank-Wolfe to support sparse gradient updates. The third algorithm stands for the mirror descent algorithm with a randomized projection. We proof converges rates for these methods for sparse problems as well as numerical experiments support their effectiveness.Comment: 26 page
    corecore