142 research outputs found

    Image-Based Localization Using Deep Neural Networks

    Get PDF
    Image-based localization, or camera relocalization, is a fundamental problem in computer vision and robotics, and it refers to estimating camera pose from an image. It is a key component of many computer vision applications such as navigating autonomous vehicles and mobile robotics, simultaneous localization and mapping (SLAM), and augmented reality. Currently, there are plenty of image-based localization methods proposed in the literature. Most state-of-the-art approaches are based on hand-crafted local features, such as SIFT, ORB, or SURF, and efficient 2D-to-3D matching using a 3D model. However, the limitations of the hand-crafted feature detector and descriptor become the bottleneck of these approaches. Recently, some promising deep neural network based localization approaches have been proposed. These approaches directly formulate 6 DoF pose estimation as a regression problem or use neural networks for generating 2D-3D correspondences, and thus no feature extraction or feature matching processes are required. In this thesis, we first review two state-of-the-art approaches for image-based localization. The first approach is conventional hand-crafted local feature based (Active Search) and the second one is novel deep neural network based (DSAC). Building on the idea of DSAC, we then examine the use of conventional RANSAC and introduce a novel full-frame Coordinate CNN. We evaluate these methods on the 7-Scenes dataset of Microsoft Research, and extensive comparisons are made. The results show that our modifications to the original DSAC pipeline lead to better performance than the two state-of-the-art approaches

    Learning to Predict Dense Correspondences for 6D Pose Estimation

    Get PDF
    Object pose estimation is an important problem in computer vision with applications in robotics, augmented reality and many other areas. An established strategy for object pose estimation consists of, firstly, finding correspondences between the image and the object’s reference frame, and, secondly, estimating the pose from outlier-free correspondences using Random Sample Consensus (RANSAC). The first step, namely finding correspondences, is difficult because object appearance varies depending on perspective, lighting and many other factors. Traditionally, correspondences have been established using handcrafted methods like sparse feature pipelines. In this thesis, we introduce a dense correspondence representation for objects, called object coordinates, which can be learned. By learning object coordinates, our pose estimation pipeline adapts to various aspects of the task at hand. It works well for diverse object types, from small objects to entire rooms, varying object attributes, like textured or texture-less objects, and different input modalities, like RGB-D or RGB images. The concept of object coordinates allows us to easily model and exploit uncertainty as part of the pipeline such that even repeating structures or areas with little texture can contribute to a good solution. Although we can train object coordinate predictors independent of the full pipeline and achieve good results, training the pipeline in an end-to-end fashion is desirable. It enables the object coordinate predictor to adapt its output to the specificities of following steps in the pose estimation pipeline. Unfortunately, the RANSAC component of the pipeline is non-differentiable which prohibits end-to-end training. Adopting techniques from reinforcement learning, we introduce Differentiable Sample Consensus (DSAC), a formulation of RANSAC which allows us to train the pose estimation pipeline in an end-to-end fashion by minimizing the expectation of the final pose error

    Feature Selection for Functional Data

    Full text link
    In this paper we address the problem of feature selection when the data is functional, we study several statistical procedures including classification, regression and principal components. One advantage of the blinding procedure is that it is very flexible since the features are defined by a set of functions, relevant to the problem being studied, proposed by the user. Our method is consistent under a set of quite general assumptions, and produces good results with the real data examples that we analyze.Comment: 22 pages, 4 figure

    Conditional Gradient Algorithms for Rank-One Matrix Approximations with a Sparsity Constraint

    Full text link
    The sparsity constrained rank-one matrix approximation problem is a difficult mathematical optimization problem which arises in a wide array of useful applications in engineering, machine learning and statistics, and the design of algorithms for this problem has attracted intensive research activities. We introduce an algorithmic framework, called ConGradU, that unifies a variety of seemingly different algorithms that have been derived from disparate approaches, and allows for deriving new schemes. Building on the old and well-known conditional gradient algorithm, ConGradU is a simplified version with unit step size and yields a generic algorithm which either is given by an analytic formula or requires a very low computational complexity. Mathematical properties are systematically developed and numerical experiments are given.Comment: Minor changes. Final version. To appear in SIAM Revie

    Recovering 3D human pose from monocular images

    Full text link
    • …
    corecore