697 research outputs found

    Learning Graphs from Linear Measurements: Fundamental Trade-offs and Applications

    Get PDF
    We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We present a sparsity characterization for distributions of random graphs (that are allowed to contain high-degree nodes), based on which we study fundamental trade-offs between the number of measurements, the complexity of the graph class, and the probability of error. We first derive a necessary condition on the number of measurements. Then, by considering a three-stage recovery scheme, we give a sufficient condition for recovery. Furthermore, assuming the measurements are Gaussian IID, we prove upper and lower bounds on the (worst-case) sample complexity for both noisy and noiseless recovery. In the special cases of the uniform distribution on trees with n nodes and the Erdős-Rényi (n,p) class, the fundamental trade-offs are tight up to multiplicative factors with noiseless measurements. In addition, for practical applications, we design and implement a polynomial-time (in n ) algorithm based on the three-stage recovery scheme. Experiments show that the heuristic algorithm outperforms basis pursuit on star graphs. We apply the heuristic algorithm to learn admittance matrices in electric grids. Simulations for several canonical graph classes and IEEE power system test cases demonstrate the effectiveness and robustness of the proposed algorithm for parameter reconstruction

    Input Sparsity and Hardness for Robust Subspace Approximation

    Full text link
    In the subspace approximation problem, we seek a k-dimensional subspace F of R^d that minimizes the sum of p-th powers of Euclidean distances to a given set of n points a_1, ..., a_n in R^d, for p >= 1. More generally than minimizing sum_i dist(a_i,F)^p,we may wish to minimize sum_i M(dist(a_i,F)) for some loss function M(), for example, M-Estimators, which include the Huber and Tukey loss functions. Such subspaces provide alternatives to the singular value decomposition (SVD), which is the p=2 case, finding such an F that minimizes the sum of squares of distances. For p in [1,2), and for typical M-Estimators, the minimizing FF gives a solution that is more robust to outliers than that provided by the SVD. We give several algorithmic and hardness results for these robust subspace approximation problems. We think of the n points as forming an n x d matrix A, and letting nnz(A) denote the number of non-zero entries of A. Our results hold for p in [1,2). We use poly(n) to denote n^{O(1)} as n -> infty. We obtain: (1) For minimizing sum_i dist(a_i,F)^p, we give an algorithm running in O(nnz(A) + (n+d)poly(k/eps) + exp(poly(k/eps))), (2) we show that the problem of minimizing sum_i dist(a_i, F)^p is NP-hard, even to output a (1+1/poly(d))-approximation, answering a question of Kannan and Vempala, and complementing prior results which held for p >2, (3) For loss functions for a wide class of M-Estimators, we give a problem-size reduction: for a parameter K=(log n)^{O(log k)}, our reduction takes O(nnz(A) log n + (n+d) poly(K/eps)) time to reduce the problem to a constrained version involving matrices whose dimensions are poly(K eps^{-1} log n). We also give bicriteria solutions, (4) Our techniques lead to the first O(nnz(A) + poly(d/eps)) time algorithms for (1+eps)-approximate regression for a wide class of convex M-Estimators.Comment: paper appeared in FOCS, 201
    • …
    corecore