238 research outputs found

    Multi-Fault Rapid Diagnosis for Wind Turbine Gearbox Using Sparse Bayesian Extreme Learning Machine

    Full text link
    © 2013 IEEE. In order to reduce operation and maintenance costs, reliability, and quick response capability of multi-fault intelligent diagnosis for the wind turbine system are becoming more important. This paper proposes a rapid data-driven fault diagnostic method, which integrates data pre-processing and machine learning techniques. In terms of data pre-processing, fault features are extracted by using the proposed modified Hilbert-Huang transforms (HHT) and correlation techniques. Then, time domain analysis is conducted to make the feature more concise. A dimension vector will then be constructed by including the intrinsic mode function energy, time domain statistical features, and the maximum value of the HHT marginal spectrum. On the other hand, as the architecture and the learning algorithm of pairwise-coupled sparse Bayesian extreme learning machine (PC-SBELM) are more concise and effective, it could identify the single- and simultaneous-fault more quickly and precisely when compared with traditional identification techniques such as pairwise-coupled probabilistic neural networks (PC-PNN) and pairwise-coupled relevance vector machine (PC-RVM). In this case study, PC-SBELM is applied to build a real-time multi-fault diagnostic system. To verify the effectiveness of the proposed fault diagnostic framework, it is carried out on a real wind turbine gearbox system. The evaluation results show that the proposed framework can detect multi-fault in wind turbine gearbox much faster and more accurately than traditional identification techniques

    Multiple-fault detection and identification scheme based on hierarchical self-organizing maps applied to an electric machine

    Get PDF
    Strategies of condition monitoring applied to electric motors play an important role in the competitiveness of multiple industrial sectors. However, the risk of faults coexistence in an electric motor and the overlapping of their effects in the considered physical magnitudes represent, currently, a critical limitation to provide reliable diagnosis outcomes. In this regard, additional investigation efforts are required towards high-dimensional data fusion schemes, particularly over the features calculation and features reduction, which represent two decisive stages in such data-driven approaches. In this study, a novel multiple-fault detection and identification methodology supported by a feature-level fusion strategy and a Self-Organizing Maps (SOM) hierarchical structure is proposed. The condition diagnosis as well as the corresponding estimated probability are obtained. Moreover, the proposed method allows the visualization of the results while preserving the underlying physical phenomenon of the system under monitoring. The proposed scheme is performed sequentially; first, a set of statistical-time based features is estimated from different physical magnitudes. Second, a hybrid feature reduction method is proposed, composed by an initial soft feature reduction, based on sequential floating forward selection to remove the less informative features, and followed by a hierarchical SOM structure which reveals directly the diagnosis and probability assessment. The effectiveness of the proposed detection and identification scheme is validated with a complete set of experimental data including healthy and five faulty conditions. The accuracy’s results are compared with classical condition monitoring approaches in order to validate the competency of the proposed method.Peer ReviewedPostprint (author's final draft

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Diagnosis of tidal turbine vibration data through deep neural networks

    Get PDF
    Tidal power is an emerging field of renewable energy, harnessing the power of regular and predictable tidal currents. However, maintenance of submerged equipment is a major challenge. Routine visual inspections of equipment must be performed onshore, requiring the costly removal of turbines from the sea bed and resulting in long periods of downtime. The development of condition monitoring techniques providing automated fault detection can therefore be extremely beneficial to this industry, reducing the dependency on inspections and allowing maintenance to be planned efficiently. This paper investigates the use of deep learning approaches for fault detection within a tidal turbine's generator from vibration data. Training and testing data were recorded over two deployment periods of operation from an accelerometer sensor placed within the nacelle of the turbine, representing ideal and faulty responses over a range of operating conditions. The paper evaluates a deep learning approach through a stacked autoencoder network in comparison to feature-based classification methods, where features have been extracted over varying rotation speeds through the Vold-Kalma filter

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    On the Development of Offshore Wind Turbine Technology:An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market

    Get PDF
    Offshore wind turbine drive train technology is evolving as developers increase size, aim to maximise availability and adapt to changing electricity grid requirements. This work first of all explores offshore technology market trends observed in Europe, providing a comprehensive overview of installed and planned capacity, showing a clear shift from smaller high-speed geared machines to larger direct-drive machines. To examine the implications of this shift in technology on reliability, stop rates for direct-drive and gear-driven turbines are compared between 39 farms across Europe and South America. This showed several key similarities between configurations, with the electrical system contributing to largest amount of turbine downtime in either case. When considering overall downtime across all components, the direct-drive machine had the highest value, which could be mainly attributed to comparatively higher downtime associated with the electrical, generator and control systems. For this study, downtime related to the gearbox and generator of the gear-driven turbine was calculated at approximately half of that of the direct-drive generator downtime. Finally, from a perspective of both reliability and fault diagnostics at component level, it is important to understand the key similarities and differences that would allow lessons learned on older technology to be adapted and transferred to newer models. This work presents a framework for assessing diagnostic models published in the literature, more specifically whether a particular failure mode and required input data will transfer well between geared and direct-drive machines. Results from 35 models found in the literature shows that the most transferable diagnostic models relate to the hydraulic, pitch and yaw systems, while the least transferable models relate to the gearbox. Faults associated with the generator, shafts and bearings are failure mode specific, but generally require some level of modification to adapt features to available data

    Anomaly-based fault detection in wind turbine main bearings

    Get PDF
    Renewable energy is a clean and inexhaustible source of energy, so every year interest in the study and the search for improvements in production increases. Wind energy is one of the most used sources of energy, and therefore the need for predictive maintenance management to guarantee the reliability and operability of each of the wind turbines has become a great study opportunity. In this work, a fault detection system is developed by applying an anomaly detector based on principal component analysis (PCA), in order to state early warnings of possible faults in the main bearing. For the development of the model, SCADA data from a wind park in operation are utilized. The results obtained allow detection of failures even months before the fatal breakdown occurs. This model requires (to be constructed) only the use of healthy SCADA data, without the need to obtain the fault history or install additional equipment or sensors that require greater investment. In conclusion, this proposed strategy provides a tool for the planning and execution of predictive maintenance within wind parks.</p
    • …
    corecore