8,294 research outputs found

    Sparse Non-rigid Registration of 3D Shapes

    Full text link
    Non-rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic scenes. Non-rigid registration is much more challenging than rigid registration as it estimates a set of local transformations instead of a single global transformation, and hence is prone to the overfitting issue due to underdetermination. The common wisdom in previous methods is to impose an â„“2-norm regularization on the local transformation differences. However, the â„“2-norm regularization tends to bias the solution towards outliers and noise with heavy-tailed distribution, which is verified by the poor goodness-of-fit of the Gaussian distribution over transformation differences. On the contrary, Laplacian distribution fits well with the transformation differences, suggesting the use of a sparsity prior. We propose a sparse non-rigid registration (SNR) method with an â„“1-norm regularized model for transformation estimation, which is effectively solved by an alternate direction method (ADM) under the augmented Lagrangian framework. We also devise a multi-resolution scheme for robust and progressive registration. Results on both public datasets and our scanned datasets show the superiority of our method, particularly in handling large-scale deformations as well as outliers and noise

    Robust Non-Rigid Registration with Reweighted Position and Transformation Sparsity

    Get PDF
    Non-rigid registration is challenging because it is ill-posed with high degrees of freedom and is thus sensitive to noise and outliers. We propose a robust non-rigid registration method using reweighted sparsities on position and transformation to estimate the deformations between 3-D shapes. We formulate the energy function with position and transformation sparsity on both the data term and the smoothness term, and define the smoothness constraint using local rigidity. The double sparsity based non-rigid registration model is enhanced with a reweighting scheme, and solved by transferring the model into four alternately-optimized subproblems which have exact solutions and guaranteed convergence. Experimental results on both public datasets and real scanned datasets show that our method outperforms the state-of-the-art methods and is more robust to noise and outliers than conventional non-rigid registration methods.Comment: IEEE Transactions on Visualization and Computer Graphic

    Global 3D non-rigid registration of deformable objects using a single RGB-D camera

    Get PDF
    We present a novel global non-rigid registration method for dynamic 3D objects. Our method allows objects to undergo large non-rigid deformations, and achieves high quality results even with substantial pose change or camera motion between views. In addition, our method does not require a template prior and uses less raw data than tracking based methods since only a sparse set of scans is needed. We compute the deformations of all the scans simultaneously by optimizing a global alignment problem to avoid the well-known loop closure problem, and use an as-rigid-as-possible constraint to eliminate the shrinkage problem of the deformed shapes, especially near open boundaries of scans. To cope with large-scale problems, we design a coarse-to-fine multi-resolution scheme, which also avoids the optimization being trapped into local minima. The proposed method is evaluated on public datasets and real datasets captured by an RGB-D sensor. Experimental results demonstrate that the proposed method obtains better results than several state-of-the-art methods

    Scalable Dense Monocular Surface Reconstruction

    Full text link
    This paper reports on a novel template-free monocular non-rigid surface reconstruction approach. Existing techniques using motion and deformation cues rely on multiple prior assumptions, are often computationally expensive and do not perform equally well across the variety of data sets. In contrast, the proposed Scalable Monocular Surface Reconstruction (SMSR) combines strengths of several algorithms, i.e., it is scalable with the number of points, can handle sparse and dense settings as well as different types of motions and deformations. We estimate camera pose by singular value thresholding and proximal gradient. Our formulation adopts alternating direction method of multipliers which converges in linear time for large point track matrices. In the proposed SMSR, trajectory space constraints are integrated by smoothing of the measurement matrix. In the extensive experiments, SMSR is demonstrated to consistently achieve state-of-the-art accuracy on a wide variety of data sets.Comment: International Conference on 3D Vision (3DV), Qingdao, China, October 201

    A Combinatorial Solution to Non-Rigid 3D Shape-to-Image Matching

    Get PDF
    We propose a combinatorial solution for the problem of non-rigidly matching a 3D shape to 3D image data. To this end, we model the shape as a triangular mesh and allow each triangle of this mesh to be rigidly transformed to achieve a suitable matching to the image. By penalising the distance and the relative rotation between neighbouring triangles our matching compromises between image and shape information. In this paper, we resolve two major challenges: Firstly, we address the resulting large and NP-hard combinatorial problem with a suitable graph-theoretic approach. Secondly, we propose an efficient discretisation of the unbounded 6-dimensional Lie group SE(3). To our knowledge this is the first combinatorial formulation for non-rigid 3D shape-to-image matching. In contrast to existing local (gradient descent) optimisation methods, we obtain solutions that do not require a good initialisation and that are within a bound of the optimal solution. We evaluate the proposed method on the two problems of non-rigid 3D shape-to-shape and non-rigid 3D shape-to-image registration and demonstrate that it provides promising results.Comment: 10 pages, 7 figure
    • …
    corecore