190 research outputs found

    Non-Negative Group Sparsity with Subspace Note Modelling for Polyphonic Transcription

    Get PDF
    This work was supported by EPSRC Platform Grant EPSRC EP/K009559/1, EPSRC Grant EP/L027119/1, and EPSRC Grant EP/J010375/1

    Non-negative matrix decomposition approaches to frequency domain analysis of music audio signals

    Full text link
    On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante.We study the application of unsupervised matrix decomposition algorithms such as Non-negative Matrix Factorization (NMF) to frequency domain representations of music audio signals. These algorithms, driven by a given reconstruction error function, learn a set of basis functions and a set of corresponding coefficients that approximate the input signal. We compare the use of three reconstruction error functions when NMF is applied to monophonic and harmonized musical scales: least squares, Kullback-Leibler divergence, and a recently introduced “phase-aware” divergence measure. Novel supervised methods for interpreting the resulting decompositions are presented and compared to previously used methods that rely on domain knowledge. Finally, the ability of the learned basis functions to generalize across musical parameter values including note amplitude, note duration and instrument type, are analyzed. To do so, we introduce two basis function labeling algorithms that outperform the previous labeling approach in the majority of our tests, instrument type with monophonic audio being the only notable exception

    Automatic Music Transcription using Structure and Sparsity

    Get PDF
    PhdAutomatic Music Transcription seeks a machine understanding of a musical signal in terms of pitch-time activations. One popular approach to this problem is the use of spectrogram decompositions, whereby a signal matrix is decomposed over a dictionary of spectral templates, each representing a note. Typically the decomposition is performed using gradient descent based methods, performed using multiplicative updates based on Non-negative Matrix Factorisation (NMF). The final representation may be expected to be sparse, as the musical signal itself is considered to consist of few active notes. In this thesis some concepts that are familiar in the sparse representations literature are introduced to the AMT problem. Structured sparsity assumes that certain atoms tend to be active together. In the context of AMT this affords the use of subspace modelling of notes, and non-negative group sparse algorithms are proposed in order to exploit the greater modelling capability introduced. Stepwise methods are often used for decomposing sparse signals and their use for AMT has previously been limited. Some new approaches to AMT are proposed by incorporation of stepwise optimal approaches with promising results seen. Dictionary coherence is used to provide recovery conditions for sparse algorithms. While such guarantees are not possible in the context of AMT, it is found that coherence is a useful parameter to consider, affording improved performance in spectrogram decompositions

    Separation of musical sources and structure from single-channel polyphonic recordings

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A User-assisted Approach to Multiple Instrument Music Transcription

    Get PDF
    PhDThe task of automatic music transcription has been studied for several decades and is regarded as an enabling technology for a multitude of applications such as music retrieval and discovery, intelligent music processing and large-scale musicological analyses. It refers to the process of identifying the musical content of a performance and representing it in a symbolic format. Despite its long research history, fully automatic music transcription systems are still error prone and often fail when more complex polyphonic music is analysed. This gives rise to the question in what ways human knowledge can be incorporated in the transcription process. This thesis investigates ways to involve a human user in the transcription process. More specifically, it is investigated how user input can be employed to derive timbre models for the instruments in a music recording, which are employed to obtain instrument-specific (parts-based) transcriptions. A first investigation studies different types of user input in order to derive instrument models by means of a non-negative matrix factorisation framework. The transcription accuracy of the different models is evaluated and a method is proposed that refines the models by allowing each pitch of each instrument to be represented by multiple basis functions. A second study aims at limiting the amount of user input to make the method more applicable in practice. Different methods are considered to estimate missing non-negative basis functions when only a subset of basis functions can be extracted based on the user information. A method is proposed to track the pitches of individual instruments over time by means of a Viterbi framework in which the states at each time frame contain several candidate instrument-pitch combinations. A transition probability is employed that combines three different criteria: the frame-wise reconstruction error of each combination, a pitch continuity measure that favours similar pitches in consecutive frames, and an explicit activity model for each instrument. The method is shown to outperform other state-of-the-art multi-instrument tracking methods. Finally, the extraction of instrument models that include phase information is investigated as a step towards complex matrix decomposition. The phase relations between the partials of harmonic sounds are explored as a time-invariant property that can be employed to form complex-valued basis functions. The application of the model for a user-assisted transcription task is illustrated with a saxophone example.QMU

    Signal Processing Methods for Music Synchronization, Audio Matching, and Source Separation

    Get PDF
    The field of music information retrieval (MIR) aims at developing techniques and tools for organizing, understanding, and searching multimodal information in large music collections in a robust, efficient and intelligent manner. In this context, this thesis presents novel, content-based methods for music synchronization, audio matching, and source separation. In general, music synchronization denotes a procedure which, for a given position in one representation of a piece of music, determines the corresponding position within another representation. Here, the thesis presents three complementary synchronization approaches, which improve upon previous methods in terms of robustness, reliability, and accuracy. The first approach employs a late-fusion strategy based on multiple, conceptually different alignment techniques to identify those music passages that allow for reliable alignment results. The second approach is based on the idea of employing musical structure analysis methods in the context of synchronization to derive reliable synchronization results even in the presence of structural differences between the versions to be aligned. Finally, the third approach employs several complementary strategies for increasing the accuracy and time resolution of synchronization results. Given a short query audio clip, the goal of audio matching is to automatically retrieve all musically similar excerpts in different versions and arrangements of the same underlying piece of music. In this context, chroma-based audio features are a well-established tool as they possess a high degree of invariance to variations in timbre. This thesis describes a novel procedure for making chroma features even more robust to changes in timbre while keeping their discriminative power. Here, the idea is to identify and discard timbre-related information using techniques inspired by the well-known MFCC features, which are usually employed in speech processing. Given a monaural music recording, the goal of source separation is to extract musically meaningful sound sources corresponding, for example, to a melody, an instrument, or a drum track from the recording. To facilitate this complex task, one can exploit additional information provided by a musical score. Based on this idea, this thesis presents two novel, conceptually different approaches to source separation. Using score information provided by a given MIDI file, the first approach employs a parametric model to describe a given audio recording of a piece of music. The resulting model is then used to extract sound sources as specified by the score. As a computationally less demanding and easier to implement alternative, the second approach employs the additional score information to guide a decomposition based on non-negative matrix factorization (NMF)

    Sequential decision making in artificial musical intelligence

    Get PDF
    Over the past 60 years, artificial intelligence has grown from a largely academic field of research to a ubiquitous array of tools and approaches used in everyday technology. Despite its many recent successes and growing prevalence, certain meaningful facets of computational intelligence have not been as thoroughly explored. Such additional facets cover a wide array of complex mental tasks which humans carry out easily, yet are difficult for computers to mimic. A prime example of a domain in which human intelligence thrives, but machine understanding is still fairly limited, is music. Over the last decade, many researchers have applied computational tools to carry out tasks such as genre identification, music summarization, music database querying, and melodic segmentation. While these are all useful algorithmic solutions, we are still a long way from constructing complete music agents, able to mimic (at least partially) the complexity with which humans approach music. One key aspect which hasn't been sufficiently studied is that of sequential decision making in musical intelligence. This thesis strives to answer the following question: Can a sequential decision making perspective guide us in the creation of better music agents, and social agents in general? And if so, how? More specifically, this thesis focuses on two aspects of musical intelligence: music recommendation and human-agent (and more generally agent-agent) interaction in the context of music. The key contributions of this thesis are the design of better music playlist recommendation algorithms; the design of algorithms for tracking user preferences over time; new approaches for modeling people's behavior in situations that involve music; and the design of agents capable of meaningful interaction with humans and other agents in a setting where music plays a roll (either directly or indirectly). Though motivated primarily by music-related tasks, and focusing largely on people's musical preferences, this thesis also establishes that insights from music-specific case studies can also be applicable in other concrete social domains, such as different types of content recommendation. Showing the generality of insights from musical data in other contexts serves as evidence for the utility of music domains as testbeds for the development of general artificial intelligence techniques. Ultimately, this thesis demonstrates the overall usefulness of taking a sequential decision making approach in settings previously unexplored from this perspectiveComputer Science

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010
    • …
    corecore