4,715 research outputs found

    Low-complexity Multiclass Encryption by Compressed Sensing

    Get PDF
    The idea that compressed sensing may be used to encrypt information from unauthorised receivers has already been envisioned, but never explored in depth since its security may seem compromised by the linearity of its encoding process. In this paper we apply this simple encoding to define a general private-key encryption scheme in which a transmitter distributes the same encoded measurements to receivers of different classes, which are provided partially corrupted encoding matrices and are thus allowed to decode the acquired signal at provably different levels of recovery quality. The security properties of this scheme are thoroughly analysed: firstly, the properties of our multiclass encryption are theoretically investigated by deriving performance bounds on the recovery quality attained by lower-class receivers with respect to high-class ones. Then we perform a statistical analysis of the measurements to show that, although not perfectly secure, compressed sensing grants some level of security that comes at almost-zero cost and thus may benefit resource-limited applications. In addition to this we report some exemplary applications of multiclass encryption by compressed sensing of speech signals, electrocardiographic tracks and images, in which quality degradation is quantified as the impossibility of some feature extraction algorithms to obtain sensitive information from suitably degraded signal recoveries.Comment: IEEE Transactions on Signal Processing, accepted for publication. Article in pres

    Graphs, Matrices, and the GraphBLAS: Seven Good Reasons

    Get PDF
    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istc- bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.Comment: 10 pages; International Conference on Computational Science workshop on the Applications of Matrix Computational Methods in the Analysis of Modern Dat

    An overview of the Amoeba distributed operating system

    Get PDF
    As hardware prices continue to drop rapidly, building large computer systems by interconnecting substantial numbers of microcomputers becomes increasingly attractive. Many techniques for interconnecting the hardware, such as Ethernet [Metcalfe and Boggs, 1976], ring nets [Farber and Larson, 1972], packet switching, and shared memory are well understood, but the corresponding software techniques are poorly understood. The design of general purpose distributed operating systems is one of the key research issues for the 1980s

    On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets

    Full text link
    Millimeter wave (mmWave) vehicular communica tion systems have the potential to improve traffic efficiency and safety. Lack of secure communication links, however, may lead to a formidable set of abuses and attacks. To secure communication links, a physical layer precoding technique for mmWave vehicular communication systems is proposed in this paper. The proposed technique exploits the large dimensional antenna arrays available at mmWave systems to produce direction dependent transmission. This results in coherent transmission to the legitimate receiver and artificial noise that jams eavesdroppers with sensitive receivers. Theoretical and numerical results demonstrate the validity and effectiveness of the proposed technique and show that the proposed technique provides high secrecy throughput when compared to conventional array and switched array transmission techniques

    WiFi Epidemiology: Can Your Neighbors' Router Make Yours Sick?

    Full text link
    In densely populated urban areas WiFi routers form a tightly interconnected proximity network that can be exploited as a substrate for the spreading of malware able to launch massive fraudulent attack and affect entire urban areas WiFi networks. In this paper we consider several scenarios for the deployment of malware that spreads solely over the wireless channel of major urban areas in the US. We develop an epidemiological model that takes into consideration prevalent security flaws on these routers. The spread of such a contagion is simulated on real-world data for geo-referenced wireless routers. We uncover a major weakness of WiFi networks in that most of the simulated scenarios show tens of thousands of routers infected in as little time as two weeks, with the majority of the infections occurring in the first 24 to 48 hours. We indicate possible containment and prevention measure to limit the eventual harm of such an attack.Comment: 22 pages, 1 table, 4 figure
    • …
    corecore