5,780 research outputs found

    Sparse and Functional Principal Components Analysis

    Full text link
    Regularized variants of Principal Components Analysis, especially Sparse PCA and Functional PCA, are among the most useful tools for the analysis of complex high-dimensional data. Many examples of massive data, have both sparse and functional (smooth) aspects and may benefit from a regularization scheme that can capture both forms of structure. For example, in neuro-imaging data, the brain's response to a stimulus may be restricted to a discrete region of activation (spatial sparsity), while exhibiting a smooth response within that region. We propose a unified approach to regularized PCA which can induce both sparsity and smoothness in both the row and column principal components. Our framework generalizes much of the previous literature, with sparse, functional, two-way sparse, and two-way functional PCA all being special cases of our approach. Our method permits flexible combinations of sparsity and smoothness that lead to improvements in feature selection and signal recovery, as well as more interpretable PCA factors. We demonstrate the efficacy of our method on simulated data and a neuroimaging example on EEG data.Comment: The published version of this paper incorrectly thanks "Luofeng Luo" instead of "Luofeng Liao" in the Acknowledgement

    Orthogonal Sparse PCA and Covariance Estimation via Procrustes Reformulation

    Full text link
    The problem of estimating sparse eigenvectors of a symmetric matrix attracts a lot of attention in many applications, especially those with high dimensional data set. While classical eigenvectors can be obtained as the solution of a maximization problem, existing approaches formulate this problem by adding a penalty term into the objective function that encourages a sparse solution. However, the resulting methods achieve sparsity at the expense of sacrificing the orthogonality property. In this paper, we develop a new method to estimate dominant sparse eigenvectors without trading off their orthogonality. The problem is highly non-convex and hard to handle. We apply the MM framework where we iteratively maximize a tight lower bound (surrogate function) of the objective function over the Stiefel manifold. The inner maximization problem turns out to be a rectangular Procrustes problem, which has a closed form solution. In addition, we propose a method to improve the covariance estimation problem when its underlying eigenvectors are known to be sparse. We use the eigenvalue decomposition of the covariance matrix to formulate an optimization problem where we impose sparsity on the corresponding eigenvectors. Numerical experiments show that the proposed eigenvector extraction algorithm matches or outperforms existing algorithms in terms of support recovery and explained variance, while the covariance estimation algorithms improve significantly the sample covariance estimator

    Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview

    Full text link
    Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.Comment: Invited overview articl

    Adaptive Restart for Accelerated Gradient Schemes

    Full text link
    In this paper we demonstrate a simple heuristic adaptive restart technique that can dramatically improve the convergence rate of accelerated gradient schemes. The analysis of the technique relies on the observation that these schemes exhibit two modes of behavior depending on how much momentum is applied. In what we refer to as the 'high momentum' regime the iterates generated by an accelerated gradient scheme exhibit a periodic behavior, where the period is proportional to the square root of the local condition number of the objective function. This suggests a restart technique whereby we reset the momentum whenever we observe periodic behavior. We provide analysis to show that in many cases adaptively restarting allows us to recover the optimal rate of convergence with no prior knowledge of function parameters.Comment: 17 pages, 7 figure

    Boosted Sparse Non-linear Distance Metric Learning

    Full text link
    This paper proposes a boosting-based solution addressing metric learning problems for high-dimensional data. Distance measures have been used as natural measures of (dis)similarity and served as the foundation of various learning methods. The efficiency of distance-based learning methods heavily depends on the chosen distance metric. With increasing dimensionality and complexity of data, however, traditional metric learning methods suffer from poor scalability and the limitation due to linearity as the true signals are usually embedded within a low-dimensional nonlinear subspace. In this paper, we propose a nonlinear sparse metric learning algorithm via boosting. We restructure a global optimization problem into a forward stage-wise learning of weak learners based on a rank-one decomposition of the weight matrix in the Mahalanobis distance metric. A gradient boosting algorithm is devised to obtain a sparse rank-one update of the weight matrix at each step. Nonlinear features are learned by a hierarchical expansion of interactions incorporated within the boosting algorithm. Meanwhile, an early stopping rule is imposed to control the overall complexity of the learned metric. As a result, our approach guarantees three desirable properties of the final metric: positive semi-definiteness, low rank and element-wise sparsity. Numerical experiments show that our learning model compares favorably with the state-of-the-art methods in the current literature of metric learning

    Penalized Orthogonal Iteration for Sparse Estimation of Generalized Eigenvalue Problem

    Full text link
    We propose a new algorithm for sparse estimation of eigenvectors in generalized eigenvalue problems (GEP). The GEP arises in a number of modern data-analytic situations and statistical methods, including principal component analysis (PCA), multiclass linear discriminant analysis (LDA), canonical correlation analysis (CCA), sufficient dimension reduction (SDR) and invariant co-ordinate selection. We propose to modify the standard generalized orthogonal iteration with a sparsity-inducing penalty for the eigenvectors. To achieve this goal, we generalize the equation-solving step of orthogonal iteration to a penalized convex optimization problem. The resulting algorithm, called penalized orthogonal iteration, provides accurate estimation of the true eigenspace, when it is sparse. Also proposed is a computationally more efficient alternative, which works well for PCA and LDA problems. Numerical studies reveal that the proposed algorithms are competitive, and that our tuning procedure works well. We demonstrate applications of the proposed algorithm to obtain sparse estimates for PCA, multiclass LDA, CCA and SDR. Supplementary materials are available online

    A direct formulation for sparse PCA using semidefinite programming

    Full text link
    We examine the problem of approximating, in the Frobenius-norm sense, a positive, semidefinite symmetric matrix by a rank-one matrix, with an upper bound on the cardinality of its eigenvector. The problem arises in the decomposition of a covariance matrix into sparse factors, and has wide applications ranging from biology to finance. We use a modification of the classical variational representation of the largest eigenvalue of a symmetric matrix, where cardinality is constrained, and derive a semidefinite programming based relaxation for our problem. We also discuss Nesterov's smooth minimization technique applied to the SDP arising in the direct sparse PCA method.Comment: Final version, to appear in SIAM revie

    Low-rank spectral optimization via gauge duality

    Full text link
    Various applications in signal processing and machine learning give rise to highly structured spectral optimization problems characterized by low-rank solutions. Two important examples that motivate this work are optimization problems from phase retrieval and from blind deconvolution, which are designed to yield rank-1 solutions. An algorithm is described that is based on solving a certain constrained eigenvalue optimization problem that corresponds to the gauge dual which, unlike the more typical Lagrange dual, has an especially simple constraint. The dominant cost at each iteration is the computation of rightmost eigenpairs of a Hermitian operator. A range of numerical examples illustrate the scalability of the approach.Comment: Final version. To appear in SIAM J. Scientific Computin

    Uniform Convergence of Gradients for Non-Convex Learning and Optimization

    Full text link
    We investigate 1) the rate at which refined properties of the empirical risk---in particular, gradients---converge to their population counterparts in standard non-convex learning tasks, and 2) the consequences of this convergence for optimization. Our analysis follows the tradition of norm-based capacity control. We propose vector-valued Rademacher complexities as a simple, composable, and user-friendly tool to derive dimension-free uniform convergence bounds for gradients in non-convex learning problems. As an application of our techniques, we give a new analysis of batch gradient descent methods for non-convex generalized linear models and non-convex robust regression, showing how to use any algorithm that finds approximate stationary points to obtain optimal sample complexity, even when dimension is high or possibly infinite and multiple passes over the dataset are allowed. Moving to non-smooth models we show----in contrast to the smooth case---that even for a single ReLU it is not possible to obtain dimension-independent convergence rates for gradients in the worst case. On the positive side, it is still possible to obtain dimension-independent rates under a new type of distributional assumption.Comment: To appear in Neural Information Processing Systems (NIPS) 201

    Sparse Quantile Huber Regression for Efficient and Robust Estimation

    Full text link
    We consider new formulations and methods for sparse quantile regression in the high-dimensional setting. Quantile regression plays an important role in many applications, including outlier-robust exploratory analysis in gene selection. In addition, the sparsity consideration in quantile regression enables the exploration of the entire conditional distribution of the response variable given the predictors and therefore yields a more comprehensive view of the important predictors. We propose a generalized OMP algorithm for variable selection, taking the misfit loss to be either the traditional quantile loss or a smooth version we call quantile Huber, and compare the resulting greedy approaches with convex sparsity-regularized formulations. We apply a recently proposed interior point methodology to efficiently solve all convex formulations as well as convex subproblems in the generalized OMP setting, pro- vide theoretical guarantees of consistent estimation, and demonstrate the performance of our approach using empirical studies of simulated and genomic datasets.Comment: 9 page
    • …
    corecore