5,900 research outputs found

    Sparse Gaussian Process for Spatial Function Estimation with Mobile Sensor Networks

    Get PDF
    Gaussian process (GP) is well researched and used in machine learning field. Comparing with artificial neural network (ANN) and support vector regression (SVR), it provides additional covariance information for regression results. By exploiting this feature, an uncertainty based locational optimisation strategy combining with an entropy based data selection method for mobile sensor networks is presented in this paper. Centroidal Voronoi tessellation (CVT) is used as a locational optimisation framework and Informative Vector Machine (IVM) is applied for data selection. Simulations with different locational optimisation criteria are conducted and the results are given, which proved the effectiveness of presented strategy

    An Empirical Bayes Approach for Distributed Estimation of Spatial Fields

    Get PDF
    In this paper we consider a network of spatially distributed sensors which collect measurement samples of a spatial field, and aim at estimating in a distributed way (without any central coordinator) the entire field by suitably fusing all network data. We propose a general probabilistic model that can handle both partial knowledge of the physics generating the spatial field as well as a purely data-driven inference. Specifically, we adopt an Empirical Bayes approach in which the spatial field is modeled as a Gaussian Process, whose mean function is described by means of parametrized equations. We characterize the Empirical Bayes estimator when nodes are heterogeneous, i.e., perform a different number of measurements. Moreover, by exploiting the sparsity of both the covariance and the (parametrized) mean function of the Gaussian Process, we are able to design a distributed spatial field estimator. We corroborate the theoretical results with two numerical simulations: a stationary temperature field estimation in which the field is described by a partial differential (heat) equation, and a data driven inference in which the mean is parametrized by a cubic spline

    Active Learning of Gaussian Processes for Spatial Functions in Mobile Sensor Networks

    Get PDF
    This paper proposes a spatial function modeling approach using mobile sensor networks, which potentially can be used for environmental surveillance applications. The mobile sensor nodes are able to sample the point observations of an 2D spatial function. On the one hand, they will use the observations to generate a predictive model of the spatial function. On the other hand, they will make collective motion decisions to move into the regions where high uncertainties of the predictive model exist. In the end, an accurate predictive model is obtained in the sensor network and all the mobile sensor nodes are distributed in the environment with an optimized pattern. Gaussian process regression is selected as the modeling technique in the proposed approach. The hyperparameters of Gaussian process model are learned online to improve the accuracy of the predictive model. The collective motion control of mobile sensor nodes is based on a locational optimization algorithm, which utilizes an information entropy of the predicted Gaussian process to explore the environment and reduce the uncertainty of predictive model. Simulation results are provided to show the performance of the proposed approach. © 2011 IFAC

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Distributed multi-agent Gaussian regression via finite-dimensional approximations

    Full text link
    We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M×MM \times M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the \ac{KL} expansion of the chosen kernel, where typically EME \ll M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data
    corecore