865 research outputs found

    Sparse Estimation with the Swept Approximated Message-Passing Algorithm

    Full text link
    Approximate Message Passing (AMP) has been shown to be a superior method for inference problems, such as the recovery of signals from sets of noisy, lower-dimensionality measurements, both in terms of reconstruction accuracy and in computational efficiency. However, AMP suffers from serious convergence issues in contexts that do not exactly match its assumptions. We propose a new approach to stabilizing AMP in these contexts by applying AMP updates to individual coefficients rather than in parallel. Our results show that this change to the AMP iteration can provide theoretically expected, but hitherto unobtainable, performance for problems on which the standard AMP iteration diverges. Additionally, we find that the computational costs of this swept coefficient update scheme is not unduly burdensome, allowing it to be applied efficiently to signals of large dimensionality.Comment: 11 pages, 3 figures, implementation available at https://github.com/eric-tramel/SwAMP-Dem

    An Overview of Multi-Processor Approximate Message Passing

    Full text link
    Approximate message passing (AMP) is an algorithmic framework for solving linear inverse problems from noisy measurements, with exciting applications such as reconstructing images, audio, hyper spectral images, and various other signals, including those acquired in compressive signal acquisiton systems. The growing prevalence of big data systems has increased interest in large-scale problems, which may involve huge measurement matrices that are unsuitable for conventional computing systems. To address the challenge of large-scale processing, multiprocessor (MP) versions of AMP have been developed. We provide an overview of two such MP-AMP variants. In row-MP-AMP, each computing node stores a subset of the rows of the matrix and processes corresponding measurements. In column- MP-AMP, each node stores a subset of columns, and is solely responsible for reconstructing a portion of the signal. We will discuss pros and cons of both approaches, summarize recent research results for each, and explain when each one may be a viable approach. Aspects that are highlighted include some recent results on state evolution for both MP-AMP algorithms, and the use of data compression to reduce communication in the MP network

    Vector Approximate Message Passing for the Generalized Linear Model

    Full text link
    The generalized linear model (GLM), where a random vector x\boldsymbol{x} is observed through a noisy, possibly nonlinear, function of a linear transform output z=Ax\boldsymbol{z}=\boldsymbol{Ax}, arises in a range of applications such as robust regression, binary classification, quantized compressed sensing, phase retrieval, photon-limited imaging, and inference from neural spike trains. When A\boldsymbol{A} is large and i.i.d. Gaussian, the generalized approximate message passing (GAMP) algorithm is an efficient means of MAP or marginal inference, and its performance can be rigorously characterized by a scalar state evolution. For general A\boldsymbol{A}, though, GAMP can misbehave. Damping and sequential-updating help to robustify GAMP, but their effects are limited. Recently, a "vector AMP" (VAMP) algorithm was proposed for additive white Gaussian noise channels. VAMP extends AMP's guarantees from i.i.d. Gaussian A\boldsymbol{A} to the larger class of rotationally invariant A\boldsymbol{A}. In this paper, we show how VAMP can be extended to the GLM. Numerical experiments show that the proposed GLM-VAMP is much more robust to ill-conditioning in A\boldsymbol{A} than damped GAMP

    Hybrid approximate message passing

    Full text link
    Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing interactions through aggregates of small, linearizable couplings of variables. AMP approximations based on the Central Limit Theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance--complexity trade-off can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.The work of S. Rangan was supported in part by the National Science Foundation under Grants 1116589, 1302336, and 1547332, and in part by the industrial affiliates of NYU WIRELESS. The work of A. K. Fletcher was supported in part by the National Science Foundation under Grants 1254204 and 1738286 and in part by the Office of Naval Research under Grant N00014-15-1-2677. The work of V. K. Goyal was supported in part by the National Science Foundation under Grant 1422034. The work of E. Byrne and P. Schniter was supported in part by the National Science Foundation under Grant CCF-1527162. (1116589 - National Science Foundation; 1302336 - National Science Foundation; 1547332 - National Science Foundation; 1254204 - National Science Foundation; 1738286 - National Science Foundation; 1422034 - National Science Foundation; CCF-1527162 - National Science Foundation; NYU WIRELESS; N00014-15-1-2677 - Office of Naval Research

    VON MISES PRIOR FOR PHASE-NOISY DOA ESTIMATION: THE VITAMIN ALGORITHM

    Get PDF
    International audienceSound waves in the ocean are affected by the space and time variabilities of the propagation medium. These fluctuations, mainly caused by internal waves such as tides and gyres, can lead to a loss of phase information in measured wave-fronts, and make hardly predictable the true location of a source. As a consequence, the performance of classical direction of arrival (DOA) estimation algorithms are significantly degraded. An important literature addresses this issue by considering either the phase as non-informative or the environment as a noise with no physical information. In this work, we propose to introduce a phase prior inspired by random fluctuation theories. This prior is combined with a sparsity assumption on the number of expected DOAs and exploited within a Bayesian framework. The contributions of such an approach are twofold: by the use of suitable prior information (small number of DOAs and phase distortion), it allows an estimation of DOAs from a single snapshot , while simultaneously providing a posterior estimation of the mean fluctuations of the propagation medium. Bayesian inference can be performed in different ways. Among the different possible procedures, we chose here to resort to a Bethe approximation and a message-passing approach recently considered in compressive sensing setups. The resulting algorithm places in the continuation of our previous works. The main improvement lies in the proba-bilistic model used to describe the phase distortion. Here we use a Multivariate Von Mises distribution, more suitable to directional statistics and still fitting the simplified theory of phase fluctuation. Numerical experiments with synthetic datasets show that the proposed algorithm , dubbed as VITAMIN for ``Von mIses swepT Approximate Message passINg'', presents interesting performance compared to other state-of-the-art algorithms. In particular, in the considered experiments, VITAMIN behaves well regarding its robustness to additive noise and phase fluctuations
    • …
    corecore