9,798 research outputs found

    Distributed Adaptive Learning of Graph Signals

    Full text link
    The aim of this paper is to propose distributed strategies for adaptive learning of signals defined over graphs. Assuming the graph signal to be bandlimited, the method enables distributed reconstruction, with guaranteed performance in terms of mean-square error, and tracking from a limited number of sampled observations taken from a subset of vertices. A detailed mean square analysis is carried out and illustrates the role played by the sampling strategy on the performance of the proposed method. Finally, some useful strategies for distributed selection of the sampling set are provided. Several numerical results validate our theoretical findings, and illustrate the performance of the proposed method for distributed adaptive learning of signals defined over graphs.Comment: To appear in IEEE Transactions on Signal Processing, 201

    An Empirical Bayes Approach for Distributed Estimation of Spatial Fields

    Get PDF
    In this paper we consider a network of spatially distributed sensors which collect measurement samples of a spatial field, and aim at estimating in a distributed way (without any central coordinator) the entire field by suitably fusing all network data. We propose a general probabilistic model that can handle both partial knowledge of the physics generating the spatial field as well as a purely data-driven inference. Specifically, we adopt an Empirical Bayes approach in which the spatial field is modeled as a Gaussian Process, whose mean function is described by means of parametrized equations. We characterize the Empirical Bayes estimator when nodes are heterogeneous, i.e., perform a different number of measurements. Moreover, by exploiting the sparsity of both the covariance and the (parametrized) mean function of the Gaussian Process, we are able to design a distributed spatial field estimator. We corroborate the theoretical results with two numerical simulations: a stationary temperature field estimation in which the field is described by a partial differential (heat) equation, and a data driven inference in which the mean is parametrized by a cubic spline

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Forecasting of commercial sales with large scale Gaussian Processes

    Full text link
    This paper argues that there has not been enough discussion in the field of applications of Gaussian Process for the fast moving consumer goods industry. Yet, this technique can be important as it e.g., can provide automatic feature relevance determination and the posterior mean can unlock insights on the data. Significant challenges are the large size and high dimensionality of commercial data at a point of sale. The study reviews approaches in the Gaussian Processes modeling for large data sets, evaluates their performance on commercial sales and shows value of this type of models as a decision-making tool for management.Comment: 1o pages, 5 figure
    corecore