83 research outputs found

    DadaGP: A Dataset of Tokenized GuitarPro Songs for Sequence Models

    Get PDF
    Originating in the Renaissance and burgeoning in the digital era, tablatures are a commonly used music notation system which provides explicit representations of instrument fingerings rather than pitches. GuitarPro has established itself as a widely used tablature format and software enabling musicians to edit and share songs for musical practice, learning, and composition. In this work, we present DadaGP, a new symbolic music dataset comprising 26,181 song scores in the GuitarPro format covering 739 musical genres, along with an accompanying tokenized format well-suited for generative sequence models such as the Transformer. The tokenized format is inspired by event-based MIDI encodings, often used in symbolic music generation models. The dataset is released with an encoder/decoder which converts GuitarPro files to tokens and back. We present results of a use case in which DadaGP is used to train a Transformer-based model to generate new songs in GuitarPro format. We discuss other relevant use cases for the dataset (guitar-bass transcription, music style transfer and artist/genre classification) as well as ethical implications. DadaGP opens up the possibility to train GuitarPro score generators, fine-tune models on custom data, create new styles of music, AI-powered songwriting apps, and human-AI improvisation

    Adaptive Scattering Transforms for Playing Technique Recognition

    Get PDF
    Playing techniques contain distinctive information about musical expressivity and interpretation. Yet, current research in music signal analysis suffers from a scarcity of computational models for playing techniques, especially in the context of live performance. To address this problem, our paper develops a general framework for playing technique recognition. We propose the adaptive scattering transform, which refers to any scattering transform that includes a stage of data-driven dimensionality reduction over at least one of its wavelet variables, for representing playing techniques. Two adaptive scattering features are presented: frequency-adaptive scattering and direction-adaptive scattering. We analyse seven playing techniques: vibrato, tremolo, trill, flutter-tongue, acciaccatura, portamento, and glissando. To evaluate the proposed methodology, we create a new dataset containing full-length Chinese bamboo flute performances (CBFdataset) with expert playing technique annotations. Once trained on the proposed scattering representations, a support vector classifier achieves state-of-the-art results. We provide explanatory visualisations of scattering coefficients for each technique and verify the system over three additional datasets with various instrumental and vocal techniques: VPset, SOL, and VocalSet

    Apprentissage de représentations musicales à l'aide d'architectures profondes et multiéchelles

    Full text link
    L'apprentissage machine (AM) est un outil important dans le domaine de la recherche d'information musicale (Music Information Retrieval ou MIR). De nombreuses tâches de MIR peuvent être résolues en entraînant un classifieur sur un ensemble de caractéristiques. Pour les tâches de MIR se basant sur l'audio musical, il est possible d'extraire de l'audio les caractéristiques pertinentes à l'aide de méthodes traitement de signal. Toutefois, certains aspects musicaux sont difficiles à extraire à l'aide de simples heuristiques. Afin d'obtenir des caractéristiques plus riches, il est possible d'utiliser l'AM pour apprendre une représentation musicale à partir de l'audio. Ces caractéristiques apprises permettent souvent d'améliorer la performance sur une tâche de MIR donnée. Afin d'apprendre des représentations musicales intéressantes, il est important de considérer les aspects particuliers à l'audio musical dans la conception des modèles d'apprentissage. Vu la structure temporelle et spectrale de l'audio musical, les représentations profondes et multiéchelles sont particulièrement bien conçues pour représenter la musique. Cette thèse porte sur l'apprentissage de représentations de l'audio musical. Des modèles profonds et multiéchelles améliorant l'état de l'art pour des tâches telles que la reconnaissance d'instrument, la reconnaissance de genre et l'étiquetage automatique y sont présentés.Machine learning (ML) is an important tool in the field of music information retrieval (MIR). Many MIR tasks can be solved by training a classifier over a set of features. For MIR tasks based on music audio, it is possible to extract features from the audio with signal processing techniques. However, some musical aspects are hard to extract with simple heuristics. To obtain richer features, we can use ML to learn a representation from the audio. These learned features can often improve performance for a given MIR task. In order to learn interesting musical representations, it is important to consider the particular aspects of music audio when building learning models. Given the temporal and spectral structure of music audio, deep and multi-scale representations are particularly well suited to represent music. This thesis focuses on learning representations from music audio. Deep and multi-scale models that improve the state-of-the-art for tasks such as instrument recognition, genre recognition and automatic annotation are presented

    Examining Emotion Perception Agreement in Live Music Performance

    Get PDF
    Current music emotion recognition (MER) systems rely on emotion data averaged across listeners and over time to infer the emotion expressed by a musical piece, often neglecting time- and listener-dependent factors. These limitations can restrict the efficacy of MER systems and cause misjudgements. In a live music concert setting, fifteen audience members annotated perceived emotion in valence-arousal space over time using a mobile application. Analyses of inter-rater reliability yielded widely varying levels of agreement in the perceived emotions. A follow-up lab study to uncover the reasons for such variability was conducted, where twenty-one listeners annotated their perceived emotions through a recording of the original performance and offered open-ended explanations. Thematic analysis reveals many salient features and interpretations that can describe the cognitive processes. Some of the results confirm known findings of music perception and MER studies. Novel findings highlight the importance of less frequently discussed musical attributes, such as musical structure, performer expression, and stage setting, as perceived across different modalities. Musicians are found to attribute emotion change to musical harmony, structure, and performance technique more than non-musicians. We suggest that listener-informed musical features can benefit MER in addressing emotional perception variability by providing reasons for listener similarities and idiosyncrasies
    corecore