135 research outputs found

    Sparse Beamforming for Real-Time Resource Management and Energy Trading in Green C-RAN

    Get PDF
    This paper considers cloud radio access network with simultaneous wireless information and power transfer and finite capacity fronthaul, where the remote radio heads are equipped with renewable energy resources and can trade energy with the grid. Due to uneven distribution of mobile radio traffic and inherent intermittent nature of renewable energy resources, the remote radio heads may need real-time energy provisioning to meet the users' demands. Given the amount of available energy resources at remote radio heads, this paper introduces two provisioning strategies to strike an optimum balance among the total power consumption in the fronthaul, through adjusting the degree of partial cooperation among the remote radio heads, the total transmit power and the maximum or the overall real-time energy demand. More specifically, this paper formulates two sparse optimization problems and applies reweighted β„“ 1 -norm approximation for β„“ 0 -norm and semidefinite relaxation to develop two iterative algorithms for the proposed strategies. Simulation results confirm that both of the proposed strategies outperform two other recently proposed schemes in terms of improving energy efficiency and reducing overall energy cost of the network

    Adaptive Energy Storage Management in Green Wireless Networks

    Get PDF
    Time-varying wireless channel as well as the variability of renewable energy supply and energy prices are practically unknown in advance. To address such dynamic statistics of wireless networks, this letter develops an adaptive strategy inspired by combinatorial multiarmed bandit model for energy storage management and cost-aware coordinated load control at the base stations. The proposed strategy makes online foresighted decisions on the amount of energy to be stored in storage to minimize the average energy cost over long-time horizon. Simulation results validate the superiority of the proposed strategy over a recently proposed storage-free learning-based design

    A Bandit Approach to Price-Aware Energy Management in Cellular Networks

    Get PDF
    We introduce a reinforcement learning algorithm inspired by the combinatorial multi-armed bandit problem to minimize the time-averaged energy cost at individual base stations (BSs), powered by various energy markets and local renewable energy sources, over a finite-time horizon. The algorithm sustains traffic demands by enabling sparse beamforming to schedule dynamic user-to-BS allocation and proactive energy provisioning at BSs to make ahead-of-time price-aware energy management decisions. Simulation results indicate a superior performance of the proposed algorithm in reducing the overall energy cost, as compared with recently proposed cooperative energy management designs

    Fronthaul Load Balancing in Energy Harvesting Powered Cloud Radio Access Networks

    Full text link
    Β© 2013 IEEE. Enhanced with wireless power transfer capability, cloud radio access network (C-RAN) enables energy-restrained mobile devices to function uninterruptedly. Beamforming of C-RAN has potential to improve the efficiency of wireless power transfer, in addition to transmission data rates. In this paper, we design the beamforming jointly for data transmission and energy transfer, under finite fronthaul capacity of C-RAN. A non-convex problem is formulated to balance the fronthaul requirements of different remote radio heads (RRHs). Norm approximations and relaxations are carried out to convexify the problem to second-order cone programming (SOCP). To improve the scalability of the design to large networks, we further decentralize the SOCP problem using the alternating direction multiplier method (ADMM). A series of reformulations and transformations are conducted, such that the resultant problem conforms to the state-of-The-Art ADMM solver and can be efficiently solved in real time. Simulation results show that the distributed algorithm can remarkably reduce the time complexity without compromising the fronthaul load balancing of its centralized counterpart. The proposed algorithms can also reduce the fronthaul bandwidth requirements by 25% to 50%, compared with the prior art
    • …
    corecore