219 research outputs found

    A sparse multinomial probit model for classification

    No full text
    A recent development in penalized probit modelling using a hierarchical Bayesian approach has led to a sparse binomial (two-class) probit classifier that can be trained via an EM algorithm. A key advantage of the formulation is that no tuning of hyperparameters relating to the penalty is needed thus simplifying the model selection process. The resulting model demonstrates excellent classification performance and a high degree of sparsity when used as a kernel machine. It is, however, restricted to the binary classification problem and can only be used in the multinomial situation via a one-against-all or one-against-many strategy. To overcome this, we apply the idea to the multinomial probit model. This leads to a direct multi-classification approach and is shown to give a sparse solution with accuracy and sparsity comparable with the current state-of-the-art. Comparative numerical benchmark examples are used to demonstrate the method

    Global consensus Monte Carlo

    Get PDF
    To conduct Bayesian inference with large data sets, it is often convenient or necessary to distribute the data across multiple machines. We consider a likelihood function expressed as a product of terms, each associated with a subset of the data. Inspired by global variable consensus optimisation, we introduce an instrumental hierarchical model associating auxiliary statistical parameters with each term, which are conditionally independent given the top-level parameters. One of these top-level parameters controls the unconditional strength of association between the auxiliary parameters. This model leads to a distributed MCMC algorithm on an extended state space yielding approximations of posterior expectations. A trade-off between computational tractability and fidelity to the original model can be controlled by changing the association strength in the instrumental model. We further propose the use of a SMC sampler with a sequence of association strengths, allowing both the automatic determination of appropriate strengths and for a bias correction technique to be applied. In contrast to similar distributed Monte Carlo algorithms, this approach requires few distributional assumptions. The performance of the algorithms is illustrated with a number of simulated examples

    Objective Bayesian Edge Screening and Structure Selection for Ising Networks

    Get PDF
    The Ising model is one of the most widely analyzed graphical models in network psychometrics. However, popular approaches to parameter estimation and structure selection for the Ising model cannot naturally express uncertainty about the estimated parameters or selected structures. To address this issue, this paper offers an objective Bayesian approach to parameter estimation and structure selection for the Ising model. Our methods build on a continuous spike-and-slab approach. We show that our methods consistently select the correct structure and provide a new objective method to set the spike-and-slab hyperparameters. To circumvent the exploration of the complete structure space, which is too large in practical situations, we propose a novel approach that first screens for promising edges and then only explore the space instantiated by these edges. We apply our proposed methods to estimate the network of depression and alcohol use disorder symptoms from symptom scores of over 26,000 subjects. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11336-022-09848-8
    • …
    corecore