1,350 research outputs found

    Information Retrieval: Recent Advances and Beyond

    Full text link
    In this paper, we provide a detailed overview of the models used for information retrieval in the first and second stages of the typical processing chain. We discuss the current state-of-the-art models, including methods based on terms, semantic retrieval, and neural. Additionally, we delve into the key topics related to the learning process of these models. This way, this survey offers a comprehensive understanding of the field and is of interest for for researchers and practitioners entering/working in the information retrieval domain

    GNN-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Passage Retrieval

    Full text link
    Recently, retrieval models based on dense representations are dominant in passage retrieval tasks, due to their outstanding ability in terms of capturing semantics of input text compared to the traditional sparse vector space models. A common practice of dense retrieval models is to exploit a dual-encoder architecture to represent a query and a passage independently. Though efficient, such a structure loses interaction between the query-passage pair, resulting in inferior accuracy. To enhance the performance of dense retrieval models without loss of efficiency, we propose a GNN-encoder model in which query (passage) information is fused into passage (query) representations via graph neural networks that are constructed by queries and their top retrieved passages. By this means, we maintain a dual-encoder structure, and retain some interaction information between query-passage pairs in their representations, which enables us to achieve both efficiency and efficacy in passage retrieval. Evaluation results indicate that our method significantly outperforms the existing models on MSMARCO, Natural Questions and TriviaQA datasets, and achieves the new state-of-the-art on these datasets.Comment: 11 pages, 6 figure

    Not All Dialogues are Created Equal: Instance Weighting for Neural Conversational Models

    Full text link
    Neural conversational models require substantial amounts of dialogue data for their parameter estimation and are therefore usually learned on large corpora such as chat forums or movie subtitles. These corpora are, however, often challenging to work with, notably due to their frequent lack of turn segmentation and the presence of multiple references external to the dialogue itself. This paper shows that these challenges can be mitigated by adding a weighting model into the architecture. The weighting model, which is itself estimated from dialogue data, associates each training example to a numerical weight that reflects its intrinsic quality for dialogue modelling. At training time, these sample weights are included into the empirical loss to be minimised. Evaluation results on retrieval-based models trained on movie and TV subtitles demonstrate that the inclusion of such a weighting model improves the model performance on unsupervised metrics.Comment: Accepted to SIGDIAL 201

    Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation

    Full text link
    The rapid proliferation of new users and items on the social web has aggravated the gray-sheep user/long-tail item challenge in recommender systems. Historically, cross-domain co-clustering methods have successfully leveraged shared users and items across dense and sparse domains to improve inference quality. However, they rely on shared rating data and cannot scale to multiple sparse target domains (i.e., the one-to-many transfer setting). This, combined with the increasing adoption of neural recommender architectures, motivates us to develop scalable neural layer-transfer approaches for cross-domain learning. Our key intuition is to guide neural collaborative filtering with domain-invariant components shared across the dense and sparse domains, improving the user and item representations learned in the sparse domains. We leverage contextual invariances across domains to develop these shared modules, and demonstrate that with user-item interaction context, we can learn-to-learn informative representation spaces even with sparse interaction data. We show the effectiveness and scalability of our approach on two public datasets and a massive transaction dataset from Visa, a global payments technology company (19% Item Recall, 3x faster vs. training separate models for each domain). Our approach is applicable to both implicit and explicit feedback settings.Comment: SIGIR 202

    SeDR: Segment Representation Learning for Long Documents Dense Retrieval

    Full text link
    Recently, Dense Retrieval (DR) has become a promising solution to document retrieval, where document representations are used to perform effective and efficient semantic search. However, DR remains challenging on long documents, due to the quadratic complexity of its Transformer-based encoder and the finite capacity of a low-dimension embedding. Current DR models use suboptimal strategies such as truncating or splitting-and-pooling to long documents leading to poor utilization of whole document information. In this work, to tackle this problem, we propose Segment representation learning for long documents Dense Retrieval (SeDR). In SeDR, Segment-Interaction Transformer is proposed to encode long documents into document-aware and segment-sensitive representations, while it holds the complexity of splitting-and-pooling and outperforms other segment-interaction patterns on DR. Since GPU memory requirements for long document encoding causes insufficient negatives for DR training, Late-Cache Negative is further proposed to provide additional cache negatives for optimizing representation learning. Experiments on MS MARCO and TREC-DL datasets show that SeDR achieves superior performance among DR models, and confirm the effectiveness of SeDR on long document retrieval
    • …
    corecore