27 research outputs found

    Scalability Benchmarking of Cloud-Native Applications Applied to Event-Driven Microservices

    Get PDF
    Cloud-native applications constitute a recent trend for designing large-scale software systems. This thesis introduces the Theodolite benchmarking method, allowing researchers and practitioners to conduct empirical scalability evaluations of cloud-native applications, their frameworks, configurations, and deployments. The benchmarking method is applied to event-driven microservices, a specific type of cloud-native applications that employ distributed stream processing frameworks to scale with massive data volumes. Extensive experimental evaluations benchmark and compare the scalability of various stream processing frameworks under different configurations and deployments, including different public and private cloud environments. These experiments show that the presented benchmarking method provides statistically sound results in an adequate amount of time. In addition, three case studies demonstrate that the Theodolite benchmarking method can be applied to a wide range of applications beyond stream processing

    Artificial intelligence driven anomaly detection for big data systems

    Get PDF
    The main goal of this thesis is to contribute to the research on automated performance anomaly detection and interference prediction by implementing Artificial Intelligence (AI) solutions for complex distributed systems, especially for Big Data platforms within cloud computing environments. The late detection and manual resolutions of performance anomalies and system interference in Big Data systems may lead to performance violations and financial penalties. Motivated by this issue, we propose AI-based methodologies for anomaly detection and interference prediction tailored to Big Data and containerized batch platforms to better analyze system performance and effectively utilize computing resources within cloud environments. Therefore, new precise and efficient performance management methods are the key to handling performance anomalies and interference impacts to improve the efficiency of data center resources. The first part of this thesis contributes to performance anomaly detection for in-memory Big Data platforms. We examine the performance of Big Data platforms and justify our choice of selecting the in-memory Apache Spark platform. An artificial neural network-driven methodology is proposed to detect and classify performance anomalies for batch workloads based on the RDD characteristics and operating system monitoring metrics. Our method is evaluated against other popular machine learning algorithms (ML), as well as against four different monitoring datasets. The results prove that our proposed method outperforms other ML methods, typically achieving 98–99% F-scores. Moreover, we prove that a random start instant, a random duration, and overlapped anomalies do not significantly impact the performance of our proposed methodology. The second contribution addresses the challenge of anomaly identification within an in-memory streaming Big Data platform by investigating agile hybrid learning techniques. We develop TRACK (neural neTwoRk Anomaly deteCtion in sparK) and TRACK-Plus, two methods to efficiently train a class of machine learning models for performance anomaly detection using a fixed number of experiments. Our model revolves around using artificial neural networks with Bayesian Optimization (BO) to find the optimal training dataset size and configuration parameters to efficiently train the anomaly detection model to achieve high accuracy. The objective is to accelerate the search process for finding the size of the training dataset, optimizing neural network configurations, and improving the performance of anomaly classification. A validation based on several datasets from a real Apache Spark Streaming system is performed, demonstrating that the proposed methodology can efficiently identify performance anomalies, near-optimal configuration parameters, and a near-optimal training dataset size while reducing the number of experiments up to 75% compared with naïve anomaly detection training. The last contribution overcomes the challenges of predicting completion time of containerized batch jobs and proactively avoiding performance interference by introducing an automated prediction solution to estimate interference among colocated batch jobs within the same computing environment. An AI-driven model is implemented to predict the interference among batch jobs before it occurs within system. Our interference detection model can alleviate and estimate the task slowdown affected by the interference. This model assists the system operators in making an accurate decision to optimize job placement. Our model is agnostic to the business logic internal to each job. Instead, it is learned from system performance data by applying artificial neural networks to establish the completion time prediction of batch jobs within the cloud environments. We compare our model with three other baseline models (queueing-theoretic model, operational analysis, and an empirical method) on historical measurements of job completion time and CPU run-queue size (i.e., the number of active threads in the system). The proposed model captures multithreading, operating system scheduling, sleeping time, and job priorities. A validation based on 4500 experiments based on the DaCapo benchmarking suite was carried out, confirming the predictive efficiency and capabilities of the proposed model by achieving up to 10% MAPE compared with the other models.Open Acces

    Performance modelling, analysis and prediction of Spark jobs in Hadoop cluster : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science, School of Mathematical & Computational Sciences, Massey University, Auckland, New Zealand

    Get PDF
    Big Data frameworks have received tremendous attention from the industry and from academic research over the past decade. The advent of distributed computing frameworks such as Hadoop MapReduce and Spark are powerful frameworks that offer an efficient solution for analysing large-scale datasets running under the Hadoop cluster. Spark has been established as one of the most popular large-scale data processing engines because of its speed, low latency in-memory computation, and advanced analytics. Spark computational performance heavily depends on the selection of suitable parameters, and the configuration of these parameters is a challenging task. Although Spark has default parameters and can deploy applications without much effort, a significant drawback of default parameter selection is that it is not always the best for cluster performance. A major limitation for Spark performance prediction using existing models is that it requires either large input data or system configuration that is time-consuming. Therefore, an analytical model could be a better solution for performance prediction and for establishing appropriate job configurations. This thesis proposes two distinct parallelisation models for performance prediction: the 2D-Plate model and the Fully-Connected Node model. Both models were constructed based on serial boundaries for a certain arrangement of executors and size of the data. In order to evaluate the cluster performance, various HiBench workloads were used, and workload’s empirical data were fitted with the models for performance prediction analysis. The developed models were benchmarked with the existing models such as Amdahl’s, Gustafson, ERNEST, and machine learning. Our experimental results show that the two proposed models can quickly and accurately predict performance in terms of runtime, and they can outperform the accuracy of machine learning models when extrapolating predictions

    Energy-aware cluster reconfiguration algorithm for the big data analytics platform spark

    Full text link
    The development of Cloud computing and data analytics technologies has made it possible to process big data faster. Distributed computing schemes, for instance, can help to reduce the time required for data analysis and thus enhance its efficiency. However, fewer researchers have paid attention to the problem of the high-energy consumption of the cluster, placing a heavy burden on the environment, especially when the number of nodes is extremely large. As a consequence, the principle of sustainable development is violated. Considering this problem, this paper proposes an approach that can be applied to remove less-efficient nodes or to migrate over-utilized nodes of the cluster so as to adjust the load of the cluster properly and thereby achieve the goal of energy conservation. Furthermore, in order to testify the performance of the proposed methodology, we present the simulation results implemented by using CloudSim

    Learning workload behaviour models from monitored time-series for resource estimation towards data center optimization

    Get PDF
    In recent years there has been an extraordinary growth of the demand of Cloud Computing resources executed in Data Centers. Modern Data Centers are complex systems that need management. As distributed computing systems grow, and workloads benefit from such computing environments, the management of such systems increases in complexity. The complexity of resource usage and power consumption on cloud-based applications makes the understanding of application behavior through expert examination difficult. The difficulty increases when applications are seen as "black boxes", where only external monitoring can be retrieved. Furthermore, given the different amount of scenarios and applications, automation is required. To deal with such complexity, Machine Learning methods become crucial to facilitate tasks that can be automatically learned from data. Firstly, this thesis proposes an unsupervised learning technique to learn high level representations from workload traces. Such technique provides a fast methodology to characterize workloads as sequences of abstract phases. The learned phase representation is validated on a variety of datasets and used in an auto-scaling task where we show that it can be applied in a production environment, achieving better performance than other state-of-the-art techniques. Secondly, this thesis proposes a neural architecture, based on Sequence-to-Sequence models, that provides the expected resource usage of applications sharing hardware resources. The proposed technique provides resource managers the ability to predict resource usage over time as well as the completion time of the running applications. The technique provides lower error predicting usage when compared with other popular Machine Learning methods. Thirdly, this thesis proposes a technique for auto-tuning Big Data workloads from the available tunable parameters. The proposed technique gathers information from the logs of an application generating a feature descriptor that captures relevant information from the application to be tuned. Using this information we demonstrate that performance models can generalize up to a 34% better when compared with other state-of-the-art solutions. Moreover, the search time to find a suitable solution can be drastically reduced, with up to a 12x speedup and almost equal quality results as modern solutions. These results prove that modern learning algorithms, with the right feature information, provide powerful techniques to manage resource allocation for applications running in cloud environments. This thesis demonstrates that learning algorithms allow relevant optimizations in Data Center environments, where applications are externally monitored and careful resource management is paramount to efficiently use computing resources. We propose to demonstrate this thesis in three areas that orbit around resource management in server environmentsEls Centres de Dades (Data Centers) moderns són sistemes complexos que necessiten ser gestionats. A mesura que creixen els sistemes de computació distribuïda i les aplicacions es beneficien d’aquestes infraestructures, també n’augmenta la seva complexitat. La complexitat que implica gestionar recursos de còmput i d’energia en sistemes de computació al núvol fa difícil entendre el comportament de les aplicacions que s'executen de manera manual. Aquesta dificultat s’incrementa quan les aplicacions s'observen com a "caixes negres", on només es poden monitoritzar algunes mètriques de les caixes de manera externa. A més, degut a la gran varietat d’escenaris i aplicacions, és necessari automatitzar la gestió d'aquests recursos. Per afrontar-ne el repte, l'aprenentatge automàtic juga un paper cabdal que facilita aquestes tasques, que poden ser apreses automàticament en base a dades prèvies del sistema que es monitoritza. Aquesta tesi demostra que els algorismes d'aprenentatge poden aportar optimitzacions molt rellevants en la gestió de Centres de Dades, on les aplicacions són monitoritzades externament i la gestió dels recursos és de vital importància per a fer un ús eficient de la capacitat de còmput d'aquests sistemes. En primer lloc, aquesta tesi proposa emprar aprenentatge no supervisat per tal d’aprendre representacions d'alt nivell a partir de traces d'aplicacions. Aquesta tècnica ens proporciona una metodologia ràpida per a caracteritzar aplicacions vistes com a seqüències de fases abstractes. La representació apresa de fases és validada en diferents “datasets” i s'aplica a la gestió de tasques d'”auto-scaling”, on es conclou que pot ser aplicable en un medi de producció, aconseguint un millor rendiment que altres mètodes de vanguardia. En segon lloc, aquesta tesi proposa l'ús de xarxes neuronals, basades en arquitectures “Sequence-to-Sequence”, que proporcionen una estimació dels recursos usats per aplicacions que comparteixen recursos de hardware. La tècnica proposada facilita als gestors de recursos l’habilitat de predir l'ús de recursos a través del temps, així com també una estimació del temps de còmput de les aplicacions. Tanmateix, redueix l’error en l’estimació de recursos en comparació amb d’altres tècniques populars d'aprenentatge automàtic. Per acabar, aquesta tesi introdueix una tècnica per a fer “auto-tuning” dels “hyper-paràmetres” d'aplicacions de Big Data. Consisteix així en obtenir informació dels “logs” de les aplicacions, generant un vector de característiques que captura informació rellevant de les aplicacions que s'han de “tunejar”. Emprant doncs aquesta informació es valida que els ”Regresors” entrenats en la predicció del rendiment de les aplicacions són capaços de generalitzar fins a un 34% millor que d’altres “Regresors” de vanguàrdia. A més, el temps de cerca per a trobar una bona solució es pot reduir dràsticament, aconseguint un increment de millora de fins a 12 vegades més dels resultats de qualitat en contraposició a alternatives modernes. Aquests resultats posen de manifest que els algorismes moderns d'aprenentatge automàtic esdevenen tècniques molt potents per tal de gestionar l'assignació de recursos en aplicacions que s'executen al núvol.Arquitectura de computador

    Insight from a Containerized Kubernetes Workload Introspection

    Get PDF
    Developments in virtual containers, especially in the cloud infrastructure, have led to diversification of jobs that containers are being used to support, particularly in the big data and machine learning spaces. The diversification has been powered by the adoption of orchestration systems that marshal fleets of containers to accomplish complex programming tasks. The additional components in the vertical technology stack, plus the continued horizontal scaling have led to questions regarding how to forensically analyze complicated technology stacks. This paper proposed a solution through the use of introspection. An exploratory case study has been conducted on a bare-metal cloud that utilizes Kubernetes, the introspection tool Prometheus, and Apache Spark. The contribution of this research is two-fold. First, it provides empirical support that introspection tools can acquire forensically viable data from different levels of a technology stack. Second, it provides the ground work for comparisons between different virtual container platforms

    Spontananfragen auf Datenströmen

    Get PDF
    Many modern applications require processing large amounts of data in a real-time fashion. As a result, distributed stream processing engines (SPEs) have gained significant attention as an important new class of big data processing systems. The central design principle of these SPEs is to handle queries that potentially run forever on data streams with a query-at-a-time model, i.e., each query is optimized and executed separately. However, in many real applications, not only long-running queries but also many short-running queries are processed on data streams. In these applications, multiple stream queries are created and deleted concurrently, in an ad-hoc manner. The best practice to handle ad-hoc stream queries is to fork input stream and add additional resources for each query. However, this approach leads to redundant computation and data copy. This thesis lays the foundation for efficient ad-hoc stream query processing. To bridge the gap between stream data processing and ad-hoc query processing, we follow a top-down approach. First, we propose a benchmarking framework to analyze state-of-the-art SPEs. We provide a definition of latency and throughput for stateful operators. Moreover, we carefully separate the system under test and the driver, to correctly represent the open-world model of typical stream processing deployments. This separation enables us to measure the system performance under realistic conditions. Our solution is the first benchmarking framework to define and test the sustainable performance of SPEs. Throughout our analysis, we realize that the state-of-the-art SPEs are unable to execute stream queries in an ad-hoc manner. Second, we propose the first ad-hoc stream query processing engine for distributed data processing environments. We develop our solution based on three main requirements: (1) Integration: Ad-hoc query processing should be a composable layer that can extend stream operators, such as join, aggregation, and window operators; (2) Consistency: Ad-hoc query creation and deletion must be performed consistently and ensure exactly-once semantics and correctness; (3) Performance: In contrast to modern SPEs, ad-hoc SPEs should not only maximize data throughput but also query throughout via incremental computation and resource sharing. Third, we propose an ad-hoc stream join processing framework that integrates dynamic query processing and query re-optimization techniques with ad-hoc stream query processing. Our solution comprises an optimization layer and a stream data processing layer. The optimization layer periodically re-optimizes the query execution plan, performing join reordering and vertical and horizontal scaling at runtime without stopping the execution. The data processing layer enables incremental and consistent query processing, supporting all the actions triggered by the optimizer. The result of the second and the third contributions forms a complete ad-hoc SPE. We utilize the first contribution not only for benchmarking modern SPEs but also for evaluating the ad-hoc SPE.Eine Vielzahl moderner Anwendungen setzten die Echtzeitverarbeitung großer Datenmengen voraus. Aus diesem Grund haben neuerdings verteilte Systeme zur Verarbeitung von Datenströmen (sog. Datenstrom-Verarbeitungssysteme, abgek. "DSV") eine wichtige Bedeutung als neue Kategorie von Massendaten-Verarbeitungssystemen erlangt. Das zentrale Entwurfsprinzip dieser DSVs ist es, Anfragen, die potenziell unendlich lange auf einem Datenstrom laufen, jeweils Eine nach der Anderen zu verarbeiten (Englisch: "query-at-a-time model"). Das bedeutet, dass jede Anfrage eigenständig vom System optimiert und ausgeführt wird. Allerdings stellen vielen reale Anwendungen nicht nur lang laufende Anfragen auf Datenströmen, sondern auch kurz laufende Spontananfragen. Solche Anwendungen können mehrere Anfragen spontan und zeitgleich erstellen und entfernen. Das bewährte Verfahren, um Spontananfragen zu bearbeiten, zweigt den eingehenden Datenstrom ab und belegt zusätzliche Ressourcen für jede neue Anfrage. Allerdings ist dieses Verfahren ineffizient, weil Spontananfragen damit redundante Berechnungen und Daten-Kopieroperationen verursachen. In dieser Arbeit legen wir das Fundament für die effiziente Verarbeitung von Spontananfragen auf Datenströmen. Wir schließen in den folgenden drei Schritten die Lücke zwischen verteilter Datenstromanfrage-Verarbeitung und Spontananfrage-Verarbeitung. Erstens stellen wir ein Benchmark-Framework zur Analyse von modernen DSVs vor. In diesem Framework stellen wir eine neue Definition für die Latenz und den Durchsatz von zustandsbehafteten Operatoren vor. Zudem unterscheiden wir genau zwischen dem zu testenden System und dem Treibersystem, um das offene-Welt Modell, welches den typischen Anwendungsszenarien in der Datenstromverabeitung entspricht, korrekt zu repräsentieren. Diese strikte Unterscheidung ermöglicht es, die Systemleistung unter realen Bedingungen zu messen. Unsere Lösung ist damit das erste Benchmark-Framework, welches die dauerhaft durchhaltbare Systemleistung von DSVs definiert und testet. Durch eine systematische Analyse aktueller DSVs stellen wir fest, dass aktuelle DSVs außerstande sind, Spontananfragen effizient zu verarbeiten. Zweitens stellen wir das erste verteilte DSV zur Spontananfrageverarbeitung vor. Wir entwickeln unser Lösungskonzept basierend auf drei Hauptanforderungen: (1) Integration: Spontananfrageverarbeitung soll ein modularer Baustein sein, mit dem Datenstrom-Operatoren wie z.B. Join, Aggregation, und Zeitfenster-Operatoren erweitert werden können; (2) Konsistenz: die Erstellung und Entfernung von Spontananfragen müssen konsistent ausgeführt werden, die Semantik für einmalige Nachrichtenzustellung erhalten, sowie die Korrektheit des Anfrage-Ergebnisses sicherstellen; (3) Leistung: Im Gegensatz zu modernen DSVs sollen DSVs zur Spontananfrageverarbeitung nicht nur den Datendurchsatz, sondern auch den Anfragedurchsatz maximieren. Dies ermöglichen wir durch inkrementelle Kompilation und der Ressourcenteilung zwischen Anfragen. Drittens stellen wir ein Programmiergerüst zur Verbeitung von Spontananfragen auf Datenströmen vor. Dieses integriert die dynamische Anfrageverarbeitung und die Nachoptimierung von Anfragen mit der Spontananfrageverarbeitung auf Datenströmen. Unser Lösungsansatz besteht aus einer Schicht zur Anfrageoptimierung und einer Schicht zur Anfrageverarbeitung. Die Optimierungsschicht optimiert periodisch den Anfrageverarbeitungsplan nach, wobei sie zur Laufzeit Joins neu anordnet und vertikal sowie horizontal skaliert, ohne die Verarbeitung anzuhalten. Die Verarbeitungsschicht ermöglicht eine inkrementelle und konsistente Anfrageverarbeitung und unterstützt alle zuvor beschriebenen Eingriffe der Optimierungsschicht in die Anfrageverarbeitung. Zusammengefasst ergeben unsere zweiten und dritten Lösungskonzepte eine vollständige DSV zur Spontananfrageverarbeitung. Wir verwenden hierzu unseren ersten Beitrag nicht nur zur Bewertung moderner DSVs, sondern auch zur Evaluation unseres DSVs zur Spontananfrageverarbeitung

    동시에 실행되는 병렬 처리 어플리케이션들을 위한 병렬성 관리

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2020. 8. Bernhard Egger.Running multiple parallel jobs on the same multicore machine is becoming more important to improve utilization of the given hardware resources. While co-location of parallel jobs is common practice, it still remains a challenge for current parallel runtime systems to efficiently execute multiple parallel applications simultaneously. Conventional parallelization runtimes such as OpenMP generate a fixed number of worker threads, typically as many as there are cores in the system, to utilize all physical core resources. On such runtime systems, applications may not achieve their peak performance when given full use of all physical core resources. Moreover, the OS kernel needs to manage all worker threads generated by all running parallel applications, and it may require huge management costs with an increasing number of co-located applications. In this thesis, we focus on improving runtime performance for co-located parallel applications. To achieve this goal, the first idea of this work is to ensure spatial scheduling to execute multiple co-located parallel applications simultaneously. Spatial scheduling that provides distinct core resources for applications is considered a promising and scalable approach for executing co-located applications. Despite the growing importance of spatial scheduling, there are still two fundamental research issues with this approach. First, spatial scheduling requires a runtime support for parallel applications to run efficiently in spatial core allocation that can change at runtime. Second, the scheduler needs to assign the proper number of core resources to applications depending on the applications performance characteristics for better runtime performance. To this end, in this thesis, we present three novel runtime-level techniques to efficiently execute co-located parallel applications with spatial scheduling. First, we present a cooperative runtime technique that provides malleable parallel execution for OpenMP parallel applications. The malleable execution means that applications can dynamically adapt their degree of parallelism to the varying core resource availability. It allows parallel applications to run efficiently at changing core resource availability compared to conventional runtime systems that do not adjust the degree of parallelism of the application. Second, this thesis introduces an analytical performance model that can estimate resource utilization and the performance of parallel programs in dependence of the provided core resources. We observe that the performance of parallel loops is typically limited by memory performance, and employ queueing theory to model the memory performance. The queueing system-based approach allows us to estimate the performance by using closed-form equations and hardware performance counters. Third, we present a core allocation framework to manage core resources between co-located parallel applications. With analytical modeling, we observe that maximizing both CPU utilization and memory bandwidth usage can generally lead to better performance compared to conventional core allocation policies that maximize only CPU usage. The presented core allocation framework optimizes utilization of multi-dimensional resources of CPU cores and memory bandwidth on multi-socket multicore systems based on the cooperative parallel runtime support and the analytical model.멀티코어 시스템에서 여러 개의 병렬 처리 어플리케이션들을 함께 실행시키는 것 은 주어진 하드웨어 자원을 효율적으로 사용하기 위해서 점점 더 중요해지고 있다. 하지만, 현재 런타임 시스템에서 여러 개의 병렬 처리 어플리케이션들을 동시에 효율적으로 실행시키는 것은 여전히 어려운 문제이다. OpenMP와 같이 통상 사 용되는 병렬화 런타임 시스템들은 모든 하드웨어 코어 자원을 사용하기 위해서 일반적으로 코어 개수 만큼 스레드를 생성하여 어플리케이션을 실행시킨다. 이 때, 어플리케이션은 모든 코어 자원을 활용할 때 오히려 최적의 성능을 얻지 못할 수도 있으며, 운영체제 커널의 부하는 실행되는 어플리케이션의 개수가 늘어날 수록 관리해야 하는 스레드의 개수가 늘어나기 때문에 계속해서 커지게 된다. 본 학위 논문에서, 우리는 함께 실행되는 병렬 처리 어플리케이션들의 런타임 성능을 높이는 것에 집중한다. 이를 위해, 본 연구의 핵심 목표는 함께 실행되는 어플리케이션들에게 공간 분할식 스케줄링 방법을 적용하는 것이다. 각 어플리 케이션에게 독립적인 코어 자원을 할당해주는 공간 분할식 스케줄링은 점점 더 늘어나는 코어 자원의 개수를 효율적으로 관리하기 위한 방법으로 많은 관심을 받고 있다. 하지만, 공간 분할 스케줄링 방법을 통해 어플리케이션을 실행시키는 것은 두 가지 연구 과제를 가지고 있다. 먼저, 각 어플리케이션은 가변적인 코어 자원 상에서 효율적으로 실행되기 위한 런타임 기술을 필요로 하고, 스케줄러는 어플리케이션들의 성능 특성을 고려해서 런타임 성능을 높일 수 있도록 적당한 수의 코어 자원을 제공해야한다. 이 학위 논문에서, 우리는 함께 실행되는 병렬 처리 어플리케이션들을 공간 분 할 스케줄링을 통해서 효율적으로 실행시키기 위한 세가지 런타임 시스템 기술을 소개한다. 먼저 우리는 협동적인 런타임 시스템이라는 기술을 소개하는데, 이는 OpenMP 병렬 처리 어플리케이션들에게 유연하고 효율적인 실행 환경을 제공한다. 이 기술은 공유 메모리 병렬 실행에 내재되어 있는 특성을 활용하여 병렬처리 프로그램들이 변화하는 코어 자원에 맞추어 병렬성의 정도를 동적으로 조절할 수 있도록 해준다. 이러한 유연한 실행 모델은 병렬 어플리케이션들이 사용 가능한 코어 자원이 동적으로 변화하는 환경에서 어플리케이션의 스레드 수준 병렬성을 다루지 못하는 기존 런타임 시스템들에 비해서 더 효율적으로 실행될 수 있도록 해준다. 두번째로, 본 논문은 사용되는 코어 자원에 따른 병렬처리 프로그램의 성능 및 자원 활용도를 예측할 수 있도록 해주는 분석적 성능 모델을 소개한다. 병렬 처리 코드의 성능 확장성이 일반적으로 메모리 성능에 좌우된다는 관찰에 기초하여, 제 안된 해석 모델은 큐잉 이론을 활용하여 메모리 시스템의 성능 정보들을 계산한다. 이 큐잉 시스템에 기반한 방법은 유용한 성능 정보들을 수식을 통해 효율적으로 계산할 수 있도록 하며 상용 시스템에서 제공하는 하드웨어 성능 카운터만을 요구 하기 때문에 활용 가능성 또한 높다. 마지막으로, 본 논문은 동시에 실행되는 병렬 처리 어플리케이션들 사이에서 코어 자원을 할당해주는 프레임워크를 소개한다. 제안된 프레임워크는 동시에 동 작하는 병렬 처리 어플리케이션의 병렬성 및 코어 자원을 관리하여 멀티 소켓 멀티코어 시스템에서 CPU 자원 및 메모리 대역폭 자원 활용도를 동시에 최적 화한다. 해석적인 모델링과 제안된 코어 할당 프레임워크의 성능 평가를 통해서, 우리가 제안하는 정책이 일반적인 경우에 CPU 자원의 활용도만을 최적화하는 방법에 비해서 함께 동작하는 어플리케이션들의 실행시간을 감소시킬 수 있음을 보여준다.1 Introduction 1 1.1 Motivation 1 1.2 Background 5 1.2.1 The OpenMP Runtime System 5 1.2.2 Target Multi-Socket Multicore Systems 7 1.3 Contributions 8 1.3.1 Cooperative Runtime Systems 9 1.3.2 Performance Modeling 9 1.3.3 Parallelism Management 10 1.4 Related Work 11 1.4.1 Cooperative Runtime Systems 11 1.4.2 Performance Modeling 12 1.4.3 Parallelism Management 14 1.5 Organization of this Thesis 15 2 Dynamic Spatial Scheduling with Cooperative Runtime Systems 17 2.1 Overview 17 2.2 Malleable Workloads 19 2.3 Cooperative OpenMP Runtime System 21 2.3.1 Cooperative User-Level Tasking 22 2.3.2 Cooperative Dynamic Loop Scheduling 27 2.4 Experimental Results 30 2.4.1 Standalone Application Performance 30 2.4.2 Performance in Spatial Core Allocation 33 2.5 Discussion 35 2.5.1 Contributions 35 2.5.2 Limitations and Future Work 36 2.5.3 Summary 37 3 Performance Modeling of Parallel Loops using Queueing Systems 38 3.1 Overview 38 3.2 Background 41 3.2.1 Queueing Models 41 3.2.2 Insights on Performance Modeling of Parallel Loops 43 3.2.3 Performance Analysis 46 3.3 Queueing Systems for Multi-Socket Multicores 54 3.3.1 Hierarchical Queueing Systems 54 3.3.2 Computingthe Parameter Values 60 3.4 The Speedup Prediction Model 63 3.4.1 The Speedup Model 63 3.4.2 Implementation 64 3.5 Evaluation 65 3.5.1 64-core AMD Opteron Platform 66 3.5.2 72-core Intel Xeon Platform 68 3.6 Discussion 70 3.6.1 Applicability of the Model 70 3.6.2 Limitations of the Model 72 3.6.3 Summary 73 4 Maximizing System Utilization via Parallelism Management 74 4.1 Overview 74 4.2 Background 76 4.2.1 Modeling Performance Metrics 76 4.2.2 Our Resource Management Policy 79 4.3 NuPoCo: Parallelism Management for Co-Located Parallel Loops 82 4.3.1 Online Performance Model 82 4.3.2 Managing Parallelism 86 4.4 Evaluation of NuPoCo 90 4.4.1 Evaluation Scenario 1 90 4.4.2 Evaluation Scenario 2 98 4.5 MOCA: An Evolutionary Approach to Core Allocation 103 4.5.1 Evolutionary Core Allocation 104 4.5.2 Model-Based Allocation 106 4.6 Evaluation of MOCA 113 4.7 Discussion 118 4.7.1 Contributions and Limitations 118 4.7.2 Summary 119 5 Conclusion and Future Work 120 5.1 Conclusion 120 5.2 Future work 122 5.2.1 Improving Multi-Objective Core Allocation 122 5.2.2 Co-Scheduling of Parallel Jobs for HPC Systems 123 A Additional Experiments for the Performance Model 124 A.1 Memory Access Distribution and Poisson Distribution 124 A.1.1 Memory Access Distribution 124 A.1.2 Kolmogorov Smirnov Test 127 A.2 Additional Performance Modeling Results 134 A.2.1 Results with Intel Hyperthreading 134 A.2.2 Results with Cooperative User-Level Tasking 134 A.2.3 Results with Other Loop Schedulers 138 A.2.4 Results with Different Number of Memory Nodes 138 B Other Research Contributions of the Author 141 B.1 Compiler and Runtime Support for Integrated CPU-GPU Systems 141 B.2 Modeling NUMA Architectures with Stochastic Tool 143 B.3 Runtime Environment for a Manycore Architecture 143 초록 159 Acknowledgements 161Docto
    corecore