475 research outputs found

    Spare capacity allocation using partially disjoint paths for dual link failure protection

    Get PDF
    A shared backup path protection (SBPP) scheme can be used to protect dual link failures by pre-planning each traffic flow with mutually disjoint working and two backup paths while minimizing the network overbuild. However, many existing backbone networks are bi-connected without three fully disjoint paths between all node pairs. Hence in practice partially disjoint paths (PDP) have been used for backup paths instead of fully disjoint ones. This paper studies the minimum spare capacity allocation (SCA) problem using PDP within an optimization framework. This is an extension of the spare provision matrix (SPM) method for PDP. The integer linear programming (ILP) model is formulated and an approximation algorithm, Successive Survivable Routing (SSR), is extended and used in the numerical study. © 2013 Scientific Assoc for infocom

    Survivability Analysis on Non-Triconnected Optical Networks under Dual-Link Failures

    Get PDF
    Survivability of optical networks is considered among the most critical problems that telecommunications operators need to solve at a reasonable cost. Survivability can be enhanced by increasing the amount of network links and its spare capacity, nevertheless this deploys more resources on the network that will be used only under failure scenarios. In other words, these spare resources do not generate any direct profit to network operators as they are reserved to route only disrupted traffic. In particular, the case of dual link failures on fiber optic cables (i.e., fiber cuts) has recently received much attention as repairing these cables typically requires much time, which then increases the probability of a second failure on another link of the network. In this context, survivability schemes can be used to recover the network from a dual link failure scenario. In this work, we analyze the case of protection and restoration schemes, which are two well-known recovery strategies. The former is simpler to implement as it considers a fixed set of backup paths for all failure scenarios; however, it cannot take into account the spare capacity released by disrupted connections. Instead, the latter computes the best recovery path considering not only the spare capacity but also the released one due to failures. Achieving 100% survivability (i.e., recovery from all possible dual link failures) requires a triconnected network, where three disjoint paths for each connection are required. Since these networks can become extremely expensive since they can require a huge number of network links (i.e., fibers connections), a more realistic case of non-triconnected networks is assumed. In these networks, full network recovery is not be feasible, but achieving the maximum possible survivability is desired. Spare capacity can then be allocated to existing network links, which represents the actual cost of the survivability. We propose optimization models that take into account these different recovery strategies, and demonstrate that restoration has the potential to provide a much better recovery capability with almost the same amount of spare capacity required in protection schemes.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Survivability Analysis on Non-Triconnected Optical Networks under Dual-Link Failures

    Get PDF
    Survivability of optical networks is considered among the most critical problems that telecommunications operators need to solve at a reasonable cost. Survivability can be enhanced by increasing the amount of network links and its spare capacity, nevertheless this deploys more resources on the network that will be used only under failure scenarios. In other words, these spare resources do not generate any direct profit to network operators as they are reserved to route only disrupted traffic. In particular, the case of dual link failures on fiber optic cables (i.e., fiber cuts) has recently received much attention as repairing these cables typically requires much time, which then increases the probability of a second failure on another link of the network. In this context, survivability schemes can be used to recover the network from a dual link failure scenario. In this work, we analyze the case of protection and restoration schemes, which are two well-known recovery strategies. The former is simpler to implement as it considers a fixed set of backup paths for all failure scenarios; however, it cannot take into account the spare capacity released by disrupted connections. Instead, the latter computes the best recovery path considering not only the spare capacity but also the released one due to failures. Achieving 100% survivability (i.e., recovery from all possible dual link failures) requires a triconnected network, where three disjoint paths for each connection are required. Since these networks can become extremely expensive since they can require a huge number of network links (i.e., fibers connections), a more realistic case of non-triconnected networks is assumed. In these networks, full network recovery is not be feasible, but achieving the maximum possible survivability is desired. Spare capacity can then be allocated to existing network links, which represents the actual cost of the survivability. We propose optimization models that take into account these different recovery strategies, and demonstrate that restoration has the potential to provide a much better recovery capability with almost the same amount of spare capacity required in protection schemes.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Survivability Analysis on Non-Triconnected Optical Networks under Dual-Link Failures

    Get PDF
    Survivability of optical networks is considered among the most critical problems that telecommunications operators need to solve at a reasonable cost. Survivability can be enhanced by increasing the amount of network links and its spare capacity, nevertheless this deploys more resources on the network that will be used only under failure scenarios. In other words, these spare resources do not generate any direct profit to network operators as they are reserved to route only disrupted traffic. In particular, the case of dual link failures on fiber optic cables (i.e., fiber cuts) has recently received much attention as repairing these cables typically requires much time, which then increases the probability of a second failure on another link of the network. In this context, survivability schemes can be used to recover the network from a dual link failure scenario. In this work, we analyze the case of protection and restoration schemes, which are two well-known recovery strategies. The former is simpler to implement as it considers a fixed set of backup paths for all failure scenarios; however, it cannot take into account the spare capacity released by disrupted connections. Instead, the latter computes the best recovery path considering not only the spare capacity but also the released one due to failures. Achieving 100% survivability (i.e., recovery from all possible dual link failures) requires a triconnected network, where three disjoint paths for each connection are required. Since these networks can become extremely expensive since they can require a huge number of network links (i.e., fibers connections), a more realistic case of non-triconnected networks is assumed. In these networks, full network recovery is not be feasible, but achieving the maximum possible survivability is desired. Spare capacity can then be allocated to existing network links, which represents the actual cost of the survivability. We propose optimization models that take into account these different recovery strategies, and demonstrate that restoration has the potential to provide a much better recovery capability with almost the same amount of spare capacity required in protection schemes.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Network protection with service guarantees

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from department-submitted PDF version of thesis.Includes bibliographical references (p. 167-174).With the increasing importance of communication networks comes an increasing need to protect against network failures. Traditional network protection has been an "all-or-nothing" approach: after any failure, all network traffic is restored. Due to the cost of providing this full protection, many network operators opt to not provide protection whatsoever. This is especially true in wireless networks, where reserving scarce resources for protection is often too costly. Furthermore, network protection often does not come with guarantees on recovery time, which becomes increasingly important with the widespread use of real-time applications that cannot tolerate long disruptions. This thesis investigates providing protection for mesh networks under a variety of service guarantees, offering significant resource savings over traditional protection schemes. First, we develop a network protection scheme that guarantees a quantifiable minimum grade of service upon a failure within the network. Our scheme guarantees that a fraction q of each demand remains after any single-link failure, at a fraction of the resources required for full protection. We develop both a linear program and algorithms to find the minimum-cost capacity allocation to meet both demand and protection requirements. Subsequently, we develop a novel network protection scheme that provides guarantees on both the fraction of time a flow has full connectivity, as well as a quantifiable minimum grade of service during downtimes. In particular, a flow can be below the full demand for at most a maximum fraction of time; then, it must still support at least a fraction q of the full demand. This is in contrast to current protection schemes that offer either availability-guarantees with no bandwidth guarantees during the down-time, or full protection schemes that offer 100% availability after a single link failure. We show that the multiple availability guaranteed problem is NP-Hard, and develop solutions using both a mixed integer linear program and heuristic algorithms. Next, we consider the problem of providing resource-efficient network protection that guarantees the maximum amount of time that flow can be interrupted after a failure. This is in contrast to schemes that offer no recovery time guarantees, such as IP rerouting, or the prevalent local recovery scheme of Fast ReRoute, which often over-provisions resources to meet recovery time constraints. To meet these recovery time guarantees, we provide a novel and flexible solution by partitioning the network into failure-independent "recovery domains", where within each domain, the maximum amount of time to recover from a failure is guaranteed. Finally, we study the problem of providing protection against failures in wireless networks subject to interference constraints. Typically, protection in wired networks is provided through the provisioning of backup paths. This approach has not been previously considered in the wireless setting due to the prohibitive cost of backup capacity. However, we show that in the presence of interference, protection can often be provided with no loss in throughput. This is due to the fact that after a failure, links that previously interfered with the failed link can be activated, thus leading to a "recapturing" of some of the lost capacity. We provide both an ILP formulation for the optimal solution, as well as algorithms that perform close to optimal.by Gregory Kuperman.Ph.D

    Differentiated quality-of-recovery and quality-of-protection in survivable WDM mesh networks

    Get PDF
    In the modern telecommunication business, there is a need to provide different Quality-of-Recovery (QoR) and Quality-of-Protection (QoP) classes in order to accommodate as many customers as possible, and to optimize the protection capacity cost. Prevalent protection methods to provide specific QoS related to protection are based on pre-defined shape protection structures (topologies), e.g., p -cycles and p -trees. Although some of these protection patterns are known to provide a good trade-off among the different protection parameters, their shapes can limit their deployment in some specific network conditions, e.g., a constrained link spare capacity budget and traffic distribution. In this thesis, we propose to re-think the design process of protection schemes in survivable WDM networks by adopting a hew design approach where the shapes of the protection structures are decided based on the targeted QoR and QoP guarantees, and not the reverse. We focus on the degree of pre-configuration of the protection topologies, and use fully and partially pre-cross connected p -structures, and dynamically cross connected p -structures. In QoR differentiation, we develop different approaches for pre-configuring the protection capacity in order to strike different balances between the protection cost and the availability requirements in the network; while in the QoP differentiation, we focus on the shaping of the protection structures to provide different grades of protection including single and dual-link failure protection. The new research directions proposed and developed in this thesis are intended to help network operators to effectively support different Quality-of-Recovery and Quality-of-Protection classes. All new ideas have been translated into mathematical models for which we propose practical and efficient design methods in order to optimize the inherent cost to the different designs of protection schemes. Furthermore, we establish a quantitative relation between the degree of pre-configuration of the protection structures and their costs in terms of protection capacity. Our most significant contributions are the design and development of Pre-Configured Protection Structure (p-structure) and Pre-Configured Protection Extended-Tree (p -etree) based schemes. Thanks to the column generation modeling and solution approaches, we propose a new design approach of protection schemes where we deploy just enough protection to provide different quality of recovery and protection classe

    Novel Approaches and Architecture for Survivable Optical Internet

    Get PDF
    Any unexpected disruption to WDM (Wavelength Division Multiplexing) based optical networks which carry data traffic at tera-bit per second may result in a huge loss to its end-users and the carrier itself. Thus survivability has been well-recognized as one of the most important objectives in the design of optical Internet. This thesis proposes a novel survivable routing architecture for the optical Internet. We focus on a number of key issues that are essential to achieve the desired service scenarios, including the tasks of (a) minimizing the total number of wavelengths used for establishing working and protection paths in WDM networks; (b) minimizing the number of affected working paths in case of a link failure; (c) handling large scale WDM mesh networks; and (d) supporting both Quality of Service (QoS) and best-effort based working lightpaths. To implement the above objectives, a novel path based shared protection framework namely Group Shared protection (GSP) is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy, and optimization is performed on these PGs. To the best of our knowledge this is the first work done in the area of group based WDM survivable routing approaches where not only the resource sharing is conducted among the PGs to achieve the best possible capacity efficiency, but also an integrated survivable routing framework is provided by incorporating the above objectives. Simulation results show the effectiveness of the proposed schemes

    Novel Approaches and Architecture for Survivable Optical Internet

    Get PDF
    Any unexpected disruption to WDM (Wavelength Division Multiplexing) based optical networks which carry data traffic at tera-bit per second may result in a huge loss to its end-users and the carrier itself. Thus survivability has been well-recognized as one of the most important objectives in the design of optical Internet. This thesis proposes a novel survivable routing architecture for the optical Internet. We focus on a number of key issues that are essential to achieve the desired service scenarios, including the tasks of (a) minimizing the total number of wavelengths used for establishing working and protection paths in WDM networks; (b) minimizing the number of affected working paths in case of a link failure; (c) handling large scale WDM mesh networks; and (d) supporting both Quality of Service (QoS) and best-effort based working lightpaths. To implement the above objectives, a novel path based shared protection framework namely Group Shared protection (GSP) is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy, and optimization is performed on these PGs. To the best of our knowledge this is the first work done in the area of group based WDM survivable routing approaches where not only the resource sharing is conducted among the PGs to achieve the best possible capacity efficiency, but also an integrated survivable routing framework is provided by incorporating the above objectives. Simulation results show the effectiveness of the proposed schemes

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Optimization Methods for Optical Long-Haul and Access Networks

    Get PDF
    Optical communications based on fiber optics and the associated technologies have seen remarkable progress over the past two decades. Widespread deployment of optical fiber has been witnessed in backbone and metro networks as well as access segments connecting to customer premises and homes. Designing and developing a reliable, robust and efficient end-to-end optical communication system have thus emerged as topics of utmost importance both to researchers and network operators. To fulfill these requirements, various problems have surfaced and received attention, such as network planning, capacity placement, traffic grooming, traffic scheduling, and bandwidth allocation. The optimal network design aims at addressing (one or more of) these problems based on some optimization objectives. In this thesis, we consider two of the most important problems in optical networks; namely the survivability in optical long-haul networks and the problem of bandwidth allocation and scheduling in optical access networks. For the former, we present efficient and accurate models for availability-aware design and service provisioning in p-cycle based survivable networks. We also derive optimization models for survivable network design based on p-trail, a more general protection structure, and compare its performance with p-cycles. Indeed, major cost savings can be obtained when the optical access and long-haul subnetworks become closer to each other by means of consolidation of access and metro networks. As this distance between long-haul and access networks reduces, and the need and expectations from passive optical access networks (PONs) soar, it becomes crucial to efficiently manage bandwidth in the access while providing the desired level of service availability in the long-haul backbone. We therefore address in this thesis the problem of bandwidth management and scheduling in passive optical networks; we design efficient joint and non-joint scheduling and bandwidth allocation methods for multichannel PON as well as next generation 10Gbps Ethernet PON (10G-EPON) while addressing the problem of coexistence between 10G-EPONs and multichannel PONs
    • …
    corecore