94,613 research outputs found

    Constant lift rotor for a heavier than air craft

    Get PDF
    A rotor blade extended radially from a hub, characterized by an elongated spar and a plurality of axially aligned shells pivotally mounted on the spar is presented. Each has an aerodynamic center located in trailing relation with the spar and supported thereby for simultaneous axial and angular displacement as centrifugal forces are applied, a pitch controller plus a plurality of pivotal pitch limiting arms transversely related to the spar. A push-pull link interconnecting the arms is used for imparting simultaneous pivotal motion, whereby the angular relationship of the arms to the spar is varied for varying the motion of the trucks along the arms for thus limiting the pitch of the segments about the spar

    Residual-strength tests of L-1011 vertical fin components after 10 and 20 years of simulated flight service

    Get PDF
    Part of the NASA/ACEE Program was to determine the effect of long-term durability testing on the residual strength of graphite-epoxy cover panel and spar components of the Lockheed L-1011 aircraft vertical stabilizer. The results of these residual strength tests are presented herein. The structural behavior and failure mode of both cover panel and spar components were addressed, and the test results obtained were compared with the static test results generated by Lockheed. The effect of damage on one of the spar specimens was described

    Investigation of models for large-scale meteorological prediction experiments

    Get PDF
    The feasibility of long-range weather prediction through the use of global general circulation models (GCMs) was investigated. A climate model was developed to simulate the monthly mean state of the atmosphere from real global initial data at the beginning of the month. The model contains the same dynamic and physical ingredients as most numerical weather prediction models and GCMs. The model generates a one-day global simulation on the 8 x 10 grid in four minutes (on an IBM 360/95 computer), so that a 30 day forecast can be executed in two hours. The high speed of the model is achieved mainly at the price of its coarse resolution, which requires certain parameterizations of surface boundary conditions, as well as inherent filtering of smaller-scale features of the initial state

    Investigation of models for large-scale meteorological prediction experiments

    Get PDF
    The feasibility of extended and long-range weather prediction by means of global atmospheric models was studied. A number of computer experiments were conducted at GISS with the GISS global general circulation model. Topics discussed include atmospheric response to sea-surface temperature anomalies, and monthly mean forecast experiments with the global model

    Investigation of models for large-scale meteorological prediction experiments

    Get PDF
    Studies are reported of the long term responses of the model atmosphere to anomalies in snow cover and sea surface temperature. An abstract of a previously issued report on the computed response to surface anomalies in a global atmospheric model is presented, and the experiments on the effects of transient sea surface temperature on the Mintz-Arakawa atmospheric model are reported

    SPAR data handling utilities

    Get PDF
    The SPAR computer software system is a collection of processors that perform particular steps in the finite-element structural analysis procedure. The data generated by each processor are stored on a data base complex residing on an auxiliary storage device, and these data are then used by subsequent processors. The SPAR data handling utilities use routines to transfer data between the processors and the data base complex. A detailed description of the data base complex organization is presented. A discussion of how these SPAR data handling utilities are used in an application program to perform desired user functions is given with the steps necessary to convert an existing program to a SPAR processor by incorporating these utilities. Finally, a sample SPAR processor is included to illustrate the use of the data handling utilities

    Metal-truss wing spars

    Get PDF
    The purpose of the study was to develop improvements in the current methods for the calculation of the loads in members of metal truss wing spars which are subjected to combined bending and compression. The theory developed here has two important practical applications. One is the calculation of the effective moment of inertia of a truss spar from the geometry of the spar and the loads to which the spar is to be subjected. The second is the determination of the most economical location of metal for stiffening a truss spar which has too much deflection

    Experiences with a preliminary NICE/SPAR structural analysis system

    Get PDF
    Development of a new structural analysis system based on the original SPAR finite element code and the NICE system is described. The system is denoted NICE/SPAR. NICE was designed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Engineering Information Systems, Inc. It includes many complementary structural analysis and utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring new computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with the SPAR computational modules

    SPAR improved structure/fluid dynamic analysis capability

    Get PDF
    The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid

    Introduction to the computational structural mechanics testbed

    Get PDF
    The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules
    • …
    corecore