3,513 research outputs found

    Improving Bacteria Controller Efficiency

    Get PDF
    We present a novel approach that would enable the placement of dynamic sensor platforms in the most optimal areas for data collection in an environment of any size. Our approach would ensure that more sensors are placed in areas that contain interesting data and less in areas with little or no data. In this paper, we use a bacteria controller to navigate the environment in the search of interesting data and show that the addition of a flocking algorithm improves the chances of finding data

    Efficient Multi-Robot Coverage of a Known Environment

    Full text link
    This paper addresses the complete area coverage problem of a known environment by multiple-robots. Complete area coverage is the problem of moving an end-effector over all available space while avoiding existing obstacles. In such tasks, using multiple robots can increase the efficiency of the area coverage in terms of minimizing the operational time and increase the robustness in the face of robot attrition. Unfortunately, the problem of finding an optimal solution for such an area coverage problem with multiple robots is known to be NP-complete. In this paper we present two approximation heuristics for solving the multi-robot coverage problem. The first solution presented is a direct extension of an efficient single robot area coverage algorithm, based on an exact cellular decomposition. The second algorithm is a greedy approach that divides the area into equal regions and applies an efficient single-robot coverage algorithm to each region. We present experimental results for two algorithms. Results indicate that our approaches provide good coverage distribution between robots and minimize the workload per robot, meanwhile ensuring complete coverage of the area.Comment: In proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Biologically Inspired Intelligence with Applications on Robot Navigation

    Get PDF
    Biologically inspired intelligence technique, an important embranchment of series on computational intelligence, plays a crucial role for robotics. The autonomous robot and vehicle industry has had an immense impact on our economy and society and this trend will continue with biologically inspired neural network techniques. In this chapter, multiple robots cooperate to achieve a common coverage goal efficiently, which can improve the work capacity, share the coverage tasks, and reduce the completion time by a biologically inspired intelligence technique, is addressed. In many real-world applications, the coverage task has to be completed without any prior knowledge of the environment. In this chapter, a neural dynamics approach is proposed for complete area coverage by multiple robots. A bio-inspired neural network is designed to model the dynamic environment and to guide a team of robots for the coverage task. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting neural equation. Each mobile robot treats the other robots as moving obstacles. Each robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot position. The proposed model algorithm is computationally simple. The feasibility is validated by four simulation studies

    A Multi-robot Coverage Path Planning Algorithm Based on Improved DARP Algorithm

    Full text link
    The research on multi-robot coverage path planning (CPP) has been attracting more and more attention. In order to achieve efficient coverage, this paper proposes an improved DARP coverage algorithm. The improved DARP algorithm based on A* algorithm is used to assign tasks to robots and then combined with STC algorithm based on Up-First algorithm to achieve full coverage of the task area. Compared with the initial DARP algorithm, this algorithm has higher efficiency and higher coverage rate

    Cooperative area surveillance strategies using multiple unmanned systems

    Get PDF
    Recently, the U.S. Department of Defense placed the technological development of intelligence, surveillance, and reconnaissance (ISR) tools at the top of its priority list. Area surveillance that takes place in an urban setting is an ISR tool of special interest. Unmanned aerial vehicles (UAVs) are ideal candidates to perform area surveillance because they are inexpensive and they do not require a human pilot to be aboard. Multiple unmanned systems increase the rate of information flow from the target region and maintain up to date information. The purpose of the research described in this dissertation is to develop and test a system that coordinates multiple UAVs on a wide area coverage surveillance mission. The research presented in this document implements a waypoint generator for multiple aerial vehicles that is especially suited for large area surveillance. The system chooses initial locations for the vehicles and generates a set of balanced sub-trees which cover the region of interest (ROI) for the vehicles. The sub-trees are then optimally combined to form a single minimal tree that spans the entire region. The system transforms the tree path into a series of waypoints suitable for the aerial vehicles. The output of the system is a set of waypoints for each vehicle assigned to the coverage task. Results from computer simulation and flight testing are presented.Ph.D.Committee Chair: Dr. George Vachtsevanos; Committee Member: Ayanna Howard; Committee Member: Dr. Thomas Michaels; Committee Member: Eric Johnson; Committee Member: Linda Will

    A Platform for Indoor Localisation, Mapping, and Data Collection using an Autonomous Vehicle

    Get PDF
    Everyone who has worked with research knows how rewarding experimenting and developing new algorithms can be. However in some cases, the hard part is not the invention of these algorithms, but their evaluation. To try and make that evaluation easier, this thesis focuses on the collection of data that can be used as positional ground truths using an autonomous measurement platform. This should assist Combain Mobile AB in the evaluation and improvement of their Wi-Fi based indoor positioning service. How and which parts of the open-source community’s work in the Robot Operating System (ROS) project to utilise is not obvious. This thesis therefore sets out to build a Minimum Viable Product (MVP) which is capable of supporting two different use cases: measure and explore inside an unknown environment, and measure inside a known environment given a map. This effectively leaves Combain with a viable product, and indirectly helps the community by aiding it in comparing and recommending the best tools and software libraries for the task. The result of this thesis ends up recommending the following for measuring inside an unknown environment: the Simultaneous Localisation And Mapping (SLAM) algorithm Google Cartographer for navigation, and the exploration algorithm Hector Exploration for planning the exploration. To measure inside a known environment the following is recommended: the Adaptive Monte Carlo Localisation (AMCL) positioning algorithm and the Spanning Tree Covering algorithm.Data har mĂ„nga anvĂ€ndningsomrĂ„den inom bĂ„de forskning och industri. I detta examensarbete skapades en platform som sjĂ€lvgĂ„ende kan anvĂ€ndas för att samla in stora mĂ€ngder data frĂ„n omgivningen

    MULTI-ROBOT COVERAGE WITH DYNAMIC COVERAGE INFORMATION COMPRESSION

    Get PDF
    This work considers the problem of coverage of an initially unknown environment by a set of autonomous robots. A crucial aspect in multi-robot coverage involves robots sharing information about the regions they have already covered at certain intervals, so that multiple robots can avoid repeated coverage of the same area. However, sharing the coverage information between robots imposes considerable communication and computation overhead on each robot, which increases the robots’ battery usage and overall coverage time. To address this problem, we explore a novel coverage technique where robots use an information compression algorithm before sharing their coverage maps with each other. Specifically, we use a polygonal approximation algorithm to represent any arbitrary region covered by a robot as a polygon with a fixed, small number of vertices. At certain intervals, each robot then sends this small set of vertices to other robots in its communication range as its covered area, and each receiving robot records this information in a local map of covered regions so that it can avoid repeat coverage. The coverage information in the map is then utilized by a technique called spanning tree coverage (STC) by each robot to perform area coverage. We have verified the performance of our algorithm on simulated Coroware Corobot robots within the Webots robot simulator with different sizes of environments and different types of obstacles in the environments, while modelling sensor noise from the robots’ sensors. Our results show that using the polygonal compression technique is an effective way to considerably reduce data transfer between robots in a multi-robot team without sacrificing the performance and efficiency gains that communication provides to such a system

    DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage Path Planning

    Get PDF
    This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an (n) optimal methodology has already been proposed and evaluated in the literature, where n is the grid size. The majority of existing algorithms for the multi-robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practically sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee complete coverage, non-backtracking solution, minimum coverage path, while at the same time does not need any preparatory stage (video demonstration and standalone application are available on-line http://tinyurl.com/DARP-app)
    • 

    corecore