4,780 research outputs found

    Spanning tree approximations for conditional random fields

    Get PDF
    Abstract In this work we show that one can train Conditional Random Fields of intractable graphs effectively and efficiently by considering a mixture of random spanning trees of the underlying graphical model. Furthermore, we show how a maximum-likelihood estimator of such a training objective can subsequently be used for prediction on the full graph. We present experimental results which improve on the state-of-the-art. Additionally, the training objective is less sensitive to the regularization than pseudo-likelihood based training approaches. We perform the experimental validation on two classes of data sets where structure is important: image denoising and multilabel classification

    Random curves on surfaces induced from the Laplacian determinant

    Full text link
    We define natural probability measures on cycle-rooted spanning forests (CRSFs) on graphs embedded on a surface with a Riemannian metric. These measures arise from the Laplacian determinant and depend on the choice of a unitary connection on the tangent bundle to the surface. We show that, for a sequence of graphs (Gn)(G_n) conformally approximating the surface, the measures on CRSFs of GnG_n converge and give a limiting probability measure on finite multicurves (finite collections of pairwise disjoint simple closed curves) on the surface, independent of the approximating sequence. Wilson's algorithm for generating spanning trees on a graph generalizes to a cycle-popping algorithm for generating CRSFs for a general family of weights on the cycles. We use this to sample the above measures. The sampling algorithm, which relates these measures to the loop-erased random walk, is also used to prove tightness of the sequence of measures, a key step in the proof of their convergence. We set the framework for the study of these probability measures and their scaling limits and state some of their properties
    • …
    corecore