1,082 research outputs found

    New Developments in Quantum Algorithms

    Full text link
    In this survey, we describe two recent developments in quantum algorithms. The first new development is a quantum algorithm for evaluating a Boolean formula consisting of AND and OR gates of size N in time O(\sqrt{N}). This provides quantum speedups for any problem that can be expressed via Boolean formulas. This result can be also extended to span problems, a generalization of Boolean formulas. This provides an optimal quantum algorithm for any Boolean function in the black-box query model. The second new development is a quantum algorithm for solving systems of linear equations. In contrast with traditional algorithms that run in time O(N^{2.37...}) where N is the size of the system, the quantum algorithm runs in time O(\log^c N). It outputs a quantum state describing the solution of the system.Comment: 11 pages, 1 figure, to appear as an invited survey talk at MFCS'201

    Span programs and quantum algorithms for st-connectivity and claw detection

    Full text link
    We introduce a span program that decides st-connectivity, and generalize the span program to develop quantum algorithms for several graph problems. First, we give an algorithm for st-connectivity that uses O(n d^{1/2}) quantum queries to the n x n adjacency matrix to decide if vertices s and t are connected, under the promise that they either are connected by a path of length at most d, or are disconnected. We also show that if T is a path, a star with two subdivided legs, or a subdivision of a claw, its presence as a subgraph in the input graph G can be detected with O(n) quantum queries to the adjacency matrix. Under the promise that G either contains T as a subgraph or does not contain T as a minor, we give O(n)-query quantum algorithms for detecting T either a triangle or a subdivision of a star. All these algorithms can be implemented time efficiently and, except for the triangle-detection algorithm, in logarithmic space. One of the main techniques is to modify the st-connectivity span program to drop along the way "breadcrumbs," which must be retrieved before the path from s is allowed to enter t.Comment: 18 pages, 4 figure

    Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function

    Full text link
    The general adversary bound is a semi-definite program (SDP) that lower-bounds the quantum query complexity of a function. We turn this lower bound into an upper bound, by giving a quantum walk algorithm based on the dual SDP that has query complexity at most the general adversary bound, up to a logarithmic factor. In more detail, the proof has two steps, each based on "span programs," a certain linear-algebraic model of computation. First, we give an SDP that outputs for any boolean function a span program computing it that has optimal "witness size." The optimal witness size is shown to coincide with the general adversary lower bound. Second, we give a quantum algorithm for evaluating span programs with only a logarithmic query overhead on the witness size. The first result is motivated by a quantum algorithm for evaluating composed span programs. The algorithm is known to be optimal for evaluating a large class of formulas. The allowed gates include all constant-size functions for which there is an optimal span program. So far, good span programs have been found in an ad hoc manner, and the SDP automates this procedure. Surprisingly, the SDP's value equals the general adversary bound. A corollary is an optimal quantum algorithm for evaluating "balanced" formulas over any finite boolean gate set. The second result extends span programs' applicability beyond the formula evaluation problem. A strong universality result for span programs follows. A good quantum query algorithm for a problem implies a good span program, and vice versa. Although nearly tight, this equivalence is nontrivial. Span programs are a promising model for developing more quantum algorithms.Comment: 70 pages, 2 figure

    A Stronger LP Bound for Formula Size Lower Bounds via Clique Constraints

    Get PDF
    We introduce a new technique proving formula size lower bounds based on the linear programming bound originally introduced by Karchmer, Kushilevitz and Nisan (1995) and the theory of stable set polytope. We apply it to majority functions and prove their formula size lower bounds improved from the classical result of Khrapchenko (1971). Moreover, we introduce a notion of unbalanced recursive ternary majority functions motivated by a decomposition theory of monotone self-dual functions and give integrally matching upper and lower bounds of their formula size. We also show monotone formula size lower bounds of balanced recursive ternary majority functions improved from the quantum adversary bound of Laplante, Lee and Szegedy (2006)
    • …
    corecore