13 research outputs found

    Integrated security sub-system for IPBrick

    Get PDF
    Estágio realizado na iPortalMais e orientado pelo Eng.º Hélder RochaTese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Implementation and evaluation of a botnet analysis and detection method in a virtual environment

    Get PDF
    Botnets are one of the biggest cyber threats. Botnets based on concepts that used for the development of malware or viruses before origin of the Internet in 1990s. Botnet is a form of malware controlled by a Botmaster using Command and Control (C&C). Since emerging of one of the first botnets PrettyPark in 1999, it has been a significant enhancement in last decade for botnet development techniques by hackers. Botnets of current age are with features such as P2P architecture, encrypted traffic, use of different protocols, stealth techniques and spreading through social networking websites such as Facebook and Bebo. With enhancements in botnet development, the objectives of cyber criminals advanced to get financial as well. ZeuS is one of the well known botnets of current with a main target is to get the financial gain. It uses advanced botnet techniques such as encrypted traffic, use of HTTP protocol and stealth techniques to hide itself from the OS. Overall objective of this thesis is application of botnet analysis and detection techniques on ZeuS bot to demonstrate that how these techniques are applicable to other modern botnets such as KoobFace, Torpig, and Kelihos etc. ZeuS code leaked in May 2011 to open the doors for hackers to utilise techniques used by ZeuS to develop new bots and for researchers to learn the internal working of one of the modern botnet of the current age. In this thesis, “ZeuS toolkit with Control Panel (CP)” is used. It contains tools to create a ZeuS bot executable with user defined configuration and ZeuS Control Panel (CP) developed in PHP and MySql, to install on a machine to act as a ZeuS “C&C server”. Ethically, according to “CSSR: British Computer Society Code of Conduct”, ZeuS botnet analysis is performed in a virtual environment with two machines i.e. “Bot victim with HIDS (Host Based Intrusion Detection System)” and “C&C server” that are isolated from host machine running VMware and the Internet. Bot executed to infect “Bot victim” machine with ZeuS bot to convert it into a “zombie” being controlled by “C&C server” machine running ZeuS Control Panel (CP). ZeuS bot analysis performed in three layers i.e. binary, application and communication layer. On binary layer analysis, reverse engineering tools used to reverse engineer the ZeuS executable to explore its internal. ZeuS reversed engineered C++ code by REC was not in a meaningful form. It indicates that ZeuS binary obfuscated using some algorithm. Only basic information i.e. version and header information for ZeuS bot executable could be found using PE Explorer tool. On application layer, during ZeuS bot execution, all activities related to threads/process, file system (.dll files accessed and files created) and registry changes captured using Procmon. Important information captured by Procmon is creation of a copy of bot executable (sdra64.exe) and data file “user.ds” created in windows subfolder “/system32” and in registry “Userinit” key modified by ZeuS to enable the ZeuS execution before Windows GUI appears (execution of Explorer.exe). On communication layer, packets during bot synchronisation with botmaster and bot commands sent by “C&C server” to “Bot victim” captured for to create rules for HIDS for signature based detection on “Bot victim”. These rules implemented and raised alarm as expected successfully. Anomaly based detection requires “learning” or profiling that requires interaction of machine on Internet. Ethically it is not possible in isolated virtual environment. DNS based detection and process to reveal a “rootkit” that modifies MBR (master boot record) of the hard disk, is not applicable for ZeuS analysis. Literature review of this thesis covers all aspects of botnet analysis and detection techniques regardless of that they are not applicable in this project ethically or ZeuS bot does not support them. Objective of providing this information is to give an overview of all analysis and detection techniques that are applicable to the modern botnets of current age

    Security for Service-Oriented On-Demand Grid Computing

    Get PDF
    Grid Computing ist mittlerweile zu einem etablierten Standard für das verteilte Höchstleistungsrechnen geworden. Während die erste Generation von Grid Middleware-Systemen noch mit proprietären Schnittstellen gearbeitet hat, wurde durch die Einführung von service-orientierten Standards wie WSDL und SOAP durch die Open Grid Services Architecture (OGSA) die Interoperabilität von Grids signifikant erhöht. Dies hat den Weg für mehrere nationale und internationale Grid-Projekten bereitet, in denen eine groß e Anzahl von akademischen und eine wachsende Anzahl von industriellen Anwendungen im Grid ausgeführt werden, die die bedarfsgesteuerte (on-demand) Provisionierung und Nutzung von Ressourcen erfordern. Bedarfsgesteuerte Grids zeichnen sich dadurch aus, dass sowohl die Software, als auch die Benutzer einer starken Fluktuation unterliegen. Weiterhin sind sowohl die Software, als auch die Daten, auf denen operiert wird, meist proprietär und haben einen hohen finanziellen Wert. Dies steht in starkem Kontrast zu den heutigen Grid-Anwendungen im akademischen Umfeld, die meist offen im Quellcode vorliegen bzw. frei verfügbar sind. Um den Ansprüchen einer bedarfsgesteuerten Grid-Nutzung gerecht zu werden, muss das Grid administrative Komponenten anbieten, mit denen Anwender autonom Software installieren können, selbst wenn diese Root-Rechte benötigen. Zur gleichen Zeit muss die Sicherheit des Grids erhöht werden, um Software, Daten und Meta-Daten der kommerziellen Anwender zu schützen. Dies würde es dem Grid auch erlauben als Basistechnologie für das gerade entstehende Gebiet des Cloud Computings zu dienen, wo ähnliche Anforderungen existieren. Wie es bei den meisten komplexen IT-Systemen der Fall ist, sind auch in traditionellen Grid Middlewares Schwachstellen zu finden, die durch die geforderten Erweiterungen der administrativen Möglichkeiten potentiell zu einem noch größ erem Problem werden. Die Schwachstellen in der Grid Middleware öffnen einen homogenen Angriffsvektor auf die ansonsten heterogenen und meist privaten Cluster-Umgebungen. Hinzu kommt, dass anders als bei den privaten Cluster-Umgebungen und kleinen akademischen Grid-Projekten die angestrebten groß en und offenen Grid-Landschaften die Administratoren mit gänzlich unbekannten Benutzern und Verhaltenstrukturen konfrontieren. Dies macht das Erkennen von böswilligem Verhalten um ein Vielfaches schwerer. Als Konsequenz werden Grid-Systeme ein immer attraktivere Ziele für Angreifer, da standardisierte Zugriffsmöglichkeiten Angriffe auf eine groß e Anzahl von Maschinen und Daten von potentiell hohem finanziellen Wert ermöglichen. Während die Rechenkapazität, die Bandbreite und der Speicherplatz an sich schon attraktive Ziele darstellen können, sind die im Grid enthaltene Software und die gespeicherten Daten viel kritischere Ressourcen. Modelldaten für die neuesten Crash-Test Simulationen, eine industrielle Fluid-Simulation, oder Rechnungsdaten von Kunden haben einen beträchtlichen Wert und müssen geschützt werden. Wenn ein Grid-Anbieter nicht für die Sicherheit von Software, Daten und Meta-Daten sorgen kann, wird die industrielle Verbreitung der offenen Grid-Technologie nicht stattfinden. Die Notwendigkeit von strikten Sicherheitsmechanismen muss mit der diametral entgegengesetzten Forderung nach einfacher und schneller Integration von neuer Software und neuen Kunden in Einklang gebracht werden. In dieser Arbeit werden neue Ansätze zur Verbesserung der Sicherheit und Nutzbarkeit von service-orientiertem bedarfsgesteuertem Grid Computing vorgestellt. Sie ermöglichen eine autonome und sichere Installation und Nutzung von komplexer, service-orientierter und traditioneller Software auf gemeinsam genutzen Ressourcen. Neue Sicherheitsmechanismen schützen Software, Daten und Meta-Daten der Anwender vor anderen Anwendern und vor externen Angreifern. Das System basiert auf Betriebssystemvirtualisierungstechnologien und bietet dynamische Erstellungs- und Installationsfunktionalitäten für virtuelle Images in einer sicheren Umgebung, in der automatisierte Mechanismen anwenderspezifische Firewall-Regeln setzen, um anwenderbezogene Netzwerkpartitionen zu erschaffen. Die Grid-Umgebung wird selbst in mehrere Bereiche unterteilt, damit die Kompromittierung von einzelnen Komponenten nicht so leicht zu einer Gefährdung des gesamten Systems führen kann. Die Grid-Headnode und der Image-Erzeugungsserver werden jeweils in einzelne Bereiche dieser demilitarisierten Zone positioniert. Um die sichere Anbindung von existierenden Geschäftsanwendungen zu ermöglichen, werden der BPEL-Standard (Business Process Execution Language) und eine Workflow-Ausführungseinheit um Grid-Sicherheitskonzepte erweitert. Die Erweiterung erlaubt eine nahtlose Integration von geschützten Grid Services mit existierenden Web Services. Die Workflow-Ausführungseinheit bietet die Erzeugung und die Erneuerung (im Falle von lange laufenden Anwendungen) von Proxy-Zertifikaten. Der Ansatz ermöglicht die sichere gemeinsame Ausführung von neuen, fein-granularen, service-orientierten Grid Anwendungen zusammen mit traditionellen Batch- und Job-Farming Anwendungen. Dies wird durch die Integration des vorgestellten Grid Sandboxing-Systems in existierende Cluster Scheduling Systeme erreicht. Eine innovative Server-Rotationsstrategie sorgt für weitere Sicherheit für den Grid Headnode Server, in dem transparent das virtuelle Server Image erneuert wird und damit auch unbekannte und unentdeckte Angriffe neutralisiert werden. Um die Angriffe, die nicht verhindert werden konnten, zu erkennen, wird ein neuartiges Intrusion Detection System vorgestellt, das auf Basis von Datenstrom-Datenbanksystemen funktioniert. Als letzte Neuerung dieser Arbeit wird eine Erweiterung des modellgetriebenen Softwareentwicklungsprozesses eingeführt, die eine automatisierte Generierung von sicheren Grid Services ermöglicht, um die komplexe und damit unsichere manuelle Erstellung von Grid Services zu ersetzen. Eine prototypische Implementierung der Konzepte wird auf Basis des Globus Toolkits 4, der Sun Grid Engine und der ActiveBPEL Engine vorgestellt. Die modellgetriebene Entwicklungsumgebung wurde in Eclipse für das Globus Toolkit 4 realisiert. Experimentelle Resultate und eine Evaluation der kritischen Komponenten des vorgestellten neuen Grids werden präsentiert. Die vorgestellten Sicherheitsmechanismem sollen die nächste Phase der Evolution des Grid Computing in einer sicheren Umgebung ermöglichen

    A Deep Learning-based Approach to Identifying and Mitigating Network Attacks Within SDN Environments Using Non-standard Data Sources

    Get PDF
    Modern society is increasingly dependent on computer networks, which are essential to delivering an increasing number of key services. With this increasing dependence, comes a corresponding increase in global traffic and users. One of the tools administrators are using to deal with this growth is Software Defined Networking (SDN). SDN changes the traditional distributed networking design to a more programmable centralised solution, based around the SDN controller. This allows administrators to respond more quickly to changing network conditions. However, this change in paradigm, along with the growing use of encryption can cause other issues. For many years, security administrators have used techniques such as deep packet inspection and signature analysis to detect malicious activity. These methods are becoming less common as artificial intelligence (AI) and deep learning technologies mature. AI and deep learning have advantages in being able to cope with 0-day attacks and being able to detect malicious activity despite the use of encryption and obfuscation techniques. However, SDN reduces the volume of data that is available for analysis with these machine learning techniques. Rather than packet information, SDN relies on flows, which are abstract representations of network activity. Security researchers have been slow to move to this new method of networking, in part because of this reduction in data, however doing so could have advantages in responding quickly to malicious activity. This research project seeks to provide a way to reconcile the contradiction apparent, by building a deep learning model that can achieve comparable results to other state-of-the-art models, while using 70% fewer features. This is achieved through the creation of new data from logs, as well as creation of a new risk-based sampling method to prioritise suspect flows for analysis, which can successfully prioritise over 90% of malicious flows from leading datasets. Additionally, provided is a mitigation method that can work with a SDN solution to automatically mitigate attacks after they are found, showcasing the advantages of closer integration with SDN

    Security and Privacy of Radio Frequency Identification

    Get PDF
    Tanenbaum, A.S. [Promotor]Crispo, B. [Copromotor

    Counter intrusion software : Malware detection using structural and behavioural features and machine learning

    Get PDF
    Over the past twenty-five years malicious software has evolved from a minor annoyance to a major security threat. Authors of malicious software are now more likely to be organised criminals than bored teenagers, and modern malicious software is more likely to be aimed at stealing data (and hence money) than trashing data. The arms race between malware authors and manufacturers of anti-malware software continues apace, but despite this, the majority of anti-malware solutions still rely on relatively old technology such as signature scanning, which works well enough in the majority of cases but which has long been known to be ineffective if signatures are not updated regularly. The need for regular updating means there is often a critical window---between the publication of a flaw exploitable by malware and the distribution of the appropriate counter measures or signature. At this point a user system is open to attack by hitherto unseen malware. The object of this thesis is to determine if it is practical to use machine learning techniques to abstract generic structural or behavioural features of malware which can then be used to recognise hitherto unseen examples. Although a sizeable amount of research has been done on various ways in which malware detection might be automated, most of the proposed methods are burdened by excessive complexity. This thesis looks specifically at the possibility of using learning systems to classify software as malicious or nonmalicious based on easily-collectable structural or behavioural data. On the basis of the experimental results presented herein it may be concluded that classification based on such structural data is certainly possible, and on behavioural data is at least feasible
    corecore