654 research outputs found

    Improved image classification with neural networks by fusing multispectral signatures with topological data

    Get PDF
    Automated schemes are needed to classify multispectral remotely sensed data. Human intelligence is often required to correctly interpret images from satellites and aircraft. Humans suceed because they use various types of cues about a scene to accurately define the contents of the image. Consequently, it follows that computer techniques that integrate and use different types of information would perform better than single source approaches. This research illustrated that multispectral signatures and topographical information could be used in concert. Significantly, this dual source tactic classified a remotely sensed image better than the multispectral classification alone. These classifications were accomplished by fusing spectral signatures with topographical information using neural network technology. A neural network was trained to classify Landsat mulitspectral signatures. A file of georeferenced ground truth classifications were used as the training criterion. The network was trained to classify urban, agriculture, range, and forest with an accuracy of 65.7 percent. Another neural network was programmed and trained to fuse these multispectral signature results with a file of georeferenced altitude data. This topological file contained 10 levels of elevations. When this nonspectral elevation information was fused with the spectral signatures, the classifications were improved to 73.7 and 75.7 percent

    Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net

    Full text link
    Hyperspectral imaging can help better understand the characteristics of different materials, compared with traditional image systems. However, only high-resolution multispectral (HrMS) and low-resolution hyperspectral (LrHS) images can generally be captured at video rate in practice. In this paper, we propose a model-based deep learning approach for merging an HrMS and LrHS images to generate a high-resolution hyperspectral (HrHS) image. In specific, we construct a novel MS/HS fusion model which takes the observation models of low-resolution images and the low-rankness knowledge along the spectral mode of HrHS image into consideration. Then we design an iterative algorithm to solve the model by exploiting the proximal gradient method. And then, by unfolding the designed algorithm, we construct a deep network, called MS/HS Fusion Net, with learning the proximal operators and model parameters by convolutional neural networks. Experimental results on simulated and real data substantiate the superiority of our method both visually and quantitatively as compared with state-of-the-art methods along this line of research.Comment: 10 pages, 7 figure

    Improving Classification in Single and Multi-View Images

    Get PDF
    Image classification is a sub-field of computer vision that focuses on identifying objects within digital images. In order to improve image classification we must address the following areas of improvement: 1) Single and Multi-View data quality using data pre-processing techniques. 2) Enhancing deep feature learning to extract alternative representation of the data. 3) Improving decision or prediction of labels. This dissertation presents a series of four published papers that explore different improvements of image classification. In our first paper, we explore the Siamese network architecture to create a Convolution Neural Network based similarity metric. We learn the priority features that differentiate two given input images. The metric proposed achieves state-of-the-art Fβ measure. In our second paper, we explore multi-view data classification. We investigate the application of Generative Adversarial Networks GANs on Multi-view data image classification and few-shot learning. Experimental results show that our method outperforms state-of-the-art research. In our third paper, we take on the challenge of improving ResNet backbone model. For this task, we focus on improving channel attention mechanisms. We utilize Discrete Wavelet Transform compression to address the channel representation problem. Experimental results on ImageNet shows that our method outperforms baseline SENet-34 and SOTA FcaNet-34 at no extra computational cost. In our fourth paper, we investigate further the potential of orthogonalization of filters for extraction of diverse information for channel attention. We prove that using only random constant orthogonal filters is sufficient enough to achieve good channel attention. We test our proposed method using ImageNet, Places365, and Birds datasets for image classification, MS-COCO for object detection, and instance segmentation tasks. Our method outperforms FcaNet, and WaveNet and achieves the state-of-the-art results

    Improving Classification in Single and Multi-View Images

    Get PDF
    Image classification is a sub-field of computer vision that focuses on identifying objects within digital images. In order to improve image classification we must address the following areas of improvement: 1) Single and Multi-View data quality using data pre-processing techniques. 2) Enhancing deep feature learning to extract alternative representation of the data. 3) Improving decision or prediction of labels. This dissertation presents a series of four published papers that explore different improvements of image classification. In our first paper, we explore the Siamese network architecture to create a Convolution Neural Network based similarity metric. We learn the priority features that differentiate two given input images. The metric proposed achieves state-of-the-art Fβ measure. In our second paper, we explore multi-view data classification. We investigate the application of Generative Adversarial Networks GANs on Multi-view data image classification and few-shot learning. Experimental results show that our method outperforms state-of-the-art research. In our third paper, we take on the challenge of improving ResNet backbone model. For this task, we focus on improving channel attention mechanisms. We utilize Discrete Wavelet Transform compression to address the channel representation problem. Experimental results on ImageNet shows that our method outperforms baseline SENet-34 and SOTA FcaNet-34 at no extra computational cost. In our fourth paper, we investigate further the potential of orthogonalization of filters for extraction of diverse information for channel attention. We prove that using only random constant orthogonal filters is sufficient enough to achieve good channel attention. We test our proposed method using ImageNet, Places365, and Birds datasets for image classification, MS-COCO for object detection, and instance segmentation tasks. Our method outperforms FcaNet, and WaveNet and achieves the state-of-the-art results

    Land cover and forest segmentation using deep neural networks

    Get PDF
    Tiivistelmä. Land Use and Land Cover (LULC) information is important for a variety of applications notably ones related to forestry. The segmentation of remotely sensed images has attracted various research subjects. However this is no easy task, with various challenges to face including the complexity of satellite images, the difficulty to get hold of them, and lack of ready datasets. It has become clear that trying to classify on multiple classes requires more elaborate methods such as Deep Learning (DL). Deep Neural Networks (DNNs) have a promising potential to be a good candidate for the task. However DNNs require a huge amount of data to train including the Ground Truth (GT) data. In this thesis a DL pixel-based approach backed by the state of the art semantic segmentation methods is followed to tackle the problem of LULC mapping. The DNN used is based on DeepLabv3 network with an encoder-decoder architecture. To tackle the issue of lack of data the Sentinel-2 satellite whose data is provided for free by Copernicus was used with the GT mapping from Corine Land Cover (CLC) provided by Copernicus and modified by Tyke to a higher resolution. From the multispectral images in Sentinel-2 Red Green Blue (RGB), and Near Infra Red (NIR) channels were extracted, the 4th channel being extremely useful in the detection of vegetation. This ended up achieving quite good accuracy on a DNN based on ResNet-50 which was calculated using the Mean Intersection over Union (MIoU) metric reaching 0.53MIoU. It was possible to use this data to transfer the learning to a data from Pleiades-1 satellite with much better resolution, Very High Resolution (VHR) in fact. The results were excellent especially when compared on training right away on that data reaching an accuracy of 0.98 and 0.85MIoU

    A study on temporal segmentation strategies for extracting common spatial patterns for brain computer interfacing

    Get PDF
    Brain computer interfaces (BCI) create a new approach to human computer communication, allowing the user to control a system simply by performing mental tasks such as motor imagery. This paper proposes and analyses different strategies for time segmentation in extracting common spatial patterns of the brain signals associated to these tasks leading to an improvement of BCI performance
    corecore