3,106 research outputs found

    GAIA: Composition, Formation and Evolution of the Galaxy

    Get PDF
    The GAIA astrometric mission has recently been approved as one of the next two `cornerstones' of ESA's science programme, with a launch date target of not later than mid-2012. GAIA will provide positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars throughout our Galaxy (and into the Local Group), amounting to about 1 per cent of the Galactic stellar population. GAIA's main scientific goal is to clarify the origin and history of our Galaxy, from a quantitative census of the stellar populations. It will advance questions such as when the stars in our Galaxy formed, when and how it was assembled, and its distribution of dark matter. The survey aims for completeness to V=20 mag, with accuracies of about 10 microarcsec at 15 mag. Combined with astrophysical information for each star, provided by on-board multi-colour photometry and (limited) spectroscopy, these data will have the precision necessary to quantify the early formation, and subsequent dynamical, chemical and star formation evolution of our Galaxy. Additional products include detection and orbital classification of tens of thousands of extra-Solar planetary systems, and a comprehensive survey of some 10^5-10^6 minor bodies in our Solar System, through galaxies in the nearby Universe, to some 500,000 distant quasars. It will provide a number of stringent new tests of general relativity and cosmology. The complete satellite system was evaluated as part of a detailed technology study, including a detailed payload design, corresponding accuracy assesments, and results from a prototype data reduction development.Comment: Accepted by A&A: 25 pages, 8 figure

    Autonomous Space Surveillance for Arbitrary Domains

    Get PDF
    Space is becoming increasingly congested every day and the task of accurately tracking satellites is paramount for the continued safe operation of both manned and unmanned space missions. In addition to new spacecraft launches, satellite break-up events and collisions generate large amounts of orbital debris dramatically increasing the number of orbiting objects with each such event. In order to prevent collisions and protect both life and property in orbit, accurate knowledge of the position of orbiting objects is necessary. Space Domain Awareness (SDA) used interchangeably with Space Situational Awareness (SSA), are the names given to the daunting task of tracking all orbiting objects. In addition to myriad objects in low-earth-orbit (LEO) up to Geostationary (GEO) orbit, there are a growing number of spacecraft in cislunar space expanding the task of cataloguing and tracking space objects to include the whole of the earth-moon system. This research proposes a series of algorithms to be used in autonomous SSA for earth-orbiting and cislunar objects. The algorithms are autonomous in the sense that once a set of raw measurements (images in this case) are input to the algorithms, no human in the loop input is required to produce an orbit estimate. There are two main components to this research, an image processing and satellite detection component, and a dynamics modeling component for three-body relative motion. For the image processing component, resident space objects, (commonly referred to as RSOs) which are satellites or orbiting debris are identified in optical images. Two methods of identifying RSOs in a set of images are presented. The first method autonomously builds a template image to match a constellation of satellites and proceeds to match RSOs across a set of images. The second method utilizes optical flow to use the image velocities of objects to differentiate between stars and RSOs. Once RSOs have been detected, measurements are generated from the detected RSO locations to estimate the orbit of the observed object. The orbit determination component includes multiple methods capable of handling both earth-orbiting and cislunar observations. The methods used include batch-least squares and unscented Kalman filtering for earth-orbiting objects. For cislunar objects, a novel application of a particle swarm optimizer (PSO) is used to estimate the observed satellite orbit. The PSO algorithm ingests a set of measurements and attempts to match a set of virtual particle measurements to the truth measurements. The PSO orbit determination method is tested using both MATLAB and Python implementations. The second main component of this research develops a novel linear dynamics model of relative motion for satellites in cislunar space. A set of novel linear relative equations of motion are developed with a semi-analytical matrix exponential method. The motion models are tested on various cislunar orbit geometries for both the elliptical restricted three-body problem (ER3BP) and the circular restricted three-body problem (CR3BP) through MATLAB simulations. The linear solution method\u27s accuracy is compared to the non-linear equations of relative motion and are seen to hold to meter level accuracy for deputy position for a variety of orbits and time-spans. Two applications of the linearized motion models are then developed. The first application defines a differential corrector to compute closed relative motion trajectories in a relative three-body frame. The second application uses the exponential matrix solution for the linearized equations of relative motion to develop a method of initial relative orbit determination (IROD) for the CR3BP

    Calibration of Viking imaging system pointing, image extraction, and optical navigation measure

    Get PDF
    Pointing control and knowledge accuracy of Viking Orbiter science instruments is controlled by the scan platform. Calibration of the scan platform and the imaging system was accomplished through mathematical models. The calibration procedure and results obtained for the two Viking spacecraft are described. Included are both ground and in-flight scan platform calibrations, and the additional calibrations unique to optical navigation

    STARPROBE: Scientific rationale

    Get PDF
    The scientific rationale and instrumentation problems in the areas of solar internal dynamics and relativity, solar plasma and particle dynamics, and solar atmosphere structure were studied. Current STARPROBE mission and system design concepts are summarized

    Design study for LANDSAT-D attitude control system

    Get PDF
    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse

    Low-frequency gravitational-wave science with eLISA/NGO

    Get PDF
    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.Comment: 20 pages, 8 figures, proceedings of the 9th Amaldi Conference on Gravitational Waves. Final journal version. For a longer exposition of the eLISA science case, see http://arxiv.org/abs/1201.362

    Design and evaluation of a digital processing unit for satellite angular velocity estimation

    Full text link
    A satellite's absolute attitude and angular rate are both important measurements for satellite missions that require navigation. Typically, these measurements have been made by separate sensors, with star cameras being used to determine a satellite's absolute attitude, and gyroscopes being used as the primary rate sensors. Recently, there have been multiple efforts to measure both of these quantities using only the star camera, however the work primarily involves solutions where the optical sensor and the unit that processes the images are separate integrated circuits. Operation in this modality requires the use of chip to chip communication in order to estimate angular rate from star tracker images, which can lead to an increase in system power, a degradation in performance, and increased latency. The goal of this thesis is to consolidate the sensing and processing into a single integrated circuit. The design and evaluation of a digital processing unit that estimates angular rate and facilitates the realization of image sensor and processor integration is presented. The processing unit is implemented in UMC's 130 nm process, has an area of 10 mm × 200 μm, and consumes 8.253 mW of power

    Precision Pointing Control System (PPCS) system design and analysis

    Get PDF
    The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target

    Mariner Mars 1971 optical navigation demonstration

    Get PDF
    The feasibility of using a combination of spacecraft-based optical data and earth-based Doppler data to perform near-real-time approach navigation was demonstrated by the Mariner Mars 71 Project. The important findings, conclusions, and recommendations are documented. A summary along with publications and papers giving additional details on the objectives of the demonstration are provided. Instrument calibration and performance as well as navigation and science results are reported
    corecore