18,059 research outputs found

    Node Repair for Distributed Storage Systems over Fading Channels

    Full text link
    Distributed storage systems and associated storage codes can efficiently store a large amount of data while ensuring that data is retrievable in case of node failure. The study of such systems, particularly the design of storage codes over finite fields, assumes that the physical channel through which the nodes communicate is error-free. This is not always the case, for example, in a wireless storage system. We study the probability that a subpacket is repaired incorrectly during node repair in a distributed storage system, in which the nodes communicate over an AWGN or Rayleigh fading channels. The asymptotic probability (as SNR increases) that a node is repaired incorrectly is shown to be completely determined by the repair locality of the DSS and the symbol error rate of the wireless channel. Lastly, we propose some design criteria for physical layer coding in this scenario, and use it to compute optimally rotated QAM constellations for use in wireless distributed storage systems.Comment: To appear in ISITA 201

    Repair Scheduling in Wireless Distributed Storage with D2D Communication

    Get PDF
    We consider distributed storage (DS) for a wireless network where mobile devices arrive and depart according to a Poisson random process. Content is stored in a number of mobile devices, using an erasure correcting code. When requesting a piece of content, a user retrieves the content from the mobile devices using device-to-device communication or, if not possible, from the base station (BS), at the expense of a higher communication cost. We consider the repair problem when a device that stores data leaves the network. In particular, we introduce a repair scheduling where repair is performed (from storage devices or the BS) periodically. We derive analytical expressions for the overall communication cost of repair and download as a function of the repair interval. We illustrate the analysis by giving results for maximum distance separable codes and regenerating codes. Our results indicate that DS can reduce the overall communication cost with respect to the case where content is only downloaded from the BS, provided that repairs are performed frequently enough. The required repair frequency depends on the code used for storage and the network parameters. In particular, minimum bandwidth regenerating codes require very frequent repairs, while maximum distance separable codes give better performance if repair is performed less frequently. We also show that instantaneous repair is not always optimal.Comment: To be presented at IEEE Information Theory Workshop (ITW) 2015, Jeju Island, Korea, October 201

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented
    • …
    corecore