2,981 research outputs found

    Evaluation of machine learning algorithms as predictive tools in road safety analysis

    Get PDF
    The Highway Safety Manual (HSM)’s road safety management process (RSMP) represents the state-of-the-practice procedure that transportation professionals employ to monitor and improve safety on existing roadway sites. RSMP requires the development of safety performance functions (SPFs), which are the key regression tools in the Highway Safety Manual’s RSMP used to predict crash frequency given a set of roadway and traffic factors. Although developing SPFs using traditional regression modeling have been proven to be reliable tools for road safety predictive analytics, some limitations and constraints have been highlighted in the literature, such as the assumption of a probability distribution, selection of a pre-defined functional form, a possible correlation between independent variables, and possible transferability issues. An alternative to traditional regression models as predictive tools is the use of Machine Learning (ML) algorithms. Although ML provides a new modeling technique, it still has made-in assumptions and their performance in collision frequency modeling needs to be studied. This research 1) compares the prediction performance of three well-known ML algorithms, i.e., Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF), to traditional SPFs, 2) conducts sensitivity analysis and compare ML with the functional form of the negative binomial (NB) model as default traditional regression modeling technique, and 3) applies and validates ML algorithms in network screening (hotspot identification), which is the first step in the RSMP. To achieve these objectives, a dataset of urban signalized and unsignalized intersections from two major municipalities in Saskatchewan (Canada) were considered as a case study. The results showed that the ML prediction accuracies are comparable with that of the NB model. Moreover, the sensitivity analysis proved that ML algorithms predictions are mostly affected by changes in traffic volume, rather than other roadway factors. Lastly, the ML-based measure consistency in identifying hotspots appeared to be comparable to SPF-based measures, e.g., the excess (predicted and expected) average crash frequency. Overall, the results of this research support the use of ML as a predictive tool in network screening, which provides transportation practitioners with an alternative modeling approach to identify collision-prone locations where countermeasures aimed at reducing collision frequency at urban intersections can be installed

    Development of Hotzone Identification Models for Simultaneous Crime and Collision Reduction

    Get PDF
    This research contributes to developing macro-level crime and collision prediction models using a new method designed to handle the problem of spatial dependency and over-dispersion in zonal data. A geographically weighted Poisson regression (GWPR) model and geographically weighted negative binomial regression (GWNBR) model were used for crime and collision prediction. Five years (2009-2013) of crime, collision, traffic, socio-demographic, road inventory, and land use data for Regina, Saskatchewan, Canada were used. The need for geographically weighted models became clear when Moran's I local indicator test showed statistically significant levels of spatial dependency. A bandwidth is a required input for geographically weighted regression models. This research tested two bandwidths: 1) fixed Gaussian and 2) adaptive bi-square bandwidth and investigated which was better suited to the study's database. Three crime models were developed: violent, non-violent and total crimes. Three collision models were developed: fatal-injury, property damage only and total collisions. The models were evaluated using seven goodness of fit (GOF) tests: 1) Akaike Information Criterion, 2) Bayesian Information Criteria, 3) Mean Square Error, 4) Mean Square Prediction Error, 5) Mean Prediction Bias, and 6) Mean Absolute Deviation. As the seven GOF tests did not produce consistent results, the cumulative residual (CURE) plot was explored. The CURE plots showed that the GWPR and GWNBR model using fixed Gaussian bandwidth was the better approach for predicting zonal level crimes and collisions in Regina. The GWNBR model has the important advantage that can be used with the empirical Bayes technique to further enhance prediction accuracy. The GWNBR crime and collision prediction models were used to identify crime and collision hotzones for simultaneous crime and collision reduction in Regina. The research used total collision and total crimes to demonstrate the determination of priority zones for focused law enforcement in Regina. Four enforcement priority zones were identified. These zones cover only 1.4% of the Citys area but account for 10.9% of total crimes and 5.8% of total collisions. The research advances knowledge by examining hotzones at a macro-level and suggesting zones where enforcement and planning for enforcement are likely to be most effective and efficient

    Modeling travel demand and crashes at macroscopic and microscopic levels

    Get PDF
    Accurate travel demand / Annual Average Daily Traffic (AADT) and crash predictions helps planners to plan, propose and prioritize infrastructure projects for future improvements. Existing methods are based on demographic characteristics, socio-economic characteristics, and on-network (includes traffic volume) characteristics. A few methods have considered land use characteristics but along with other predictor variables. A strong correlation exists between land use characteristics and these other predictor variables. None of the past research has attempted to directly evaluate the effect and influence of land use characteristics on travel demand/AADT and crashes at both area and link level. These land use characteristics may be easy to capture and may have better predictive capabilities than other variables. The primary focus of this research is to develop macroscopic and microscopic models to estimate travel demand and crashes with an emphasis on land use characteristics. The proposed methodology involves development of macroscopic (area level) and microscopic (link level) models by incorporating scientific principles, statistical and artificial intelligent techniques. The microscopic models help evaluate the link level performance, whereas the macroscopic models help evaluate the overall performance of an area. The method for developing macroscopic models differs from microscopic models. The areas of land use characteristics were considered in developing macroscopic models, whereas the principle of demographic gravitation is incorporated in developing microscopic models. Statistical and back-propagation neural network (BPNN) techniques are used in developing the models. The results obtained indicate that statistical and neural network models ensured significantly lower errors. Overall, the BPNN models yielded better results in estimating travel demand and crashes than any other approach considered in this research. The neural network approach can be particularly suitable for their better predictive capability, whereas the statistical models could be used for mathematical formulation or understanding the role of explanatory variables in estimating AADT. Results obtained also indicate that land use characteristics have better predictive capabilities than other variables considered in this research. The outcomes can be used in safety conscious planning, land use decisions, long range transportation plans, prioritization of projects (short term and long term), and, to proactively apply safety treatments

    Optimisation of speed camera locations using genetic algorithm and pattern search

    Get PDF
    Road traffic accidents continue to be a public health problem and are a global issue due to the huge financial burden they place on families and society as a whole. Speed has been identified as a major contributor to the severity of traffic accidents and there is the need for better speed management if road traffic accidents are to be reduced. Over the years various measures have been implemented to manage vehicle speeds. The use of speed cameras and vehicle activated signs in recent times has contributed to the reduction of vehicle speeds to various extents. Speed cameras use punitive measures whereas vehicle activated signs do not so their use depends on various factors. Engineers, planners and decision makers responsible for determining the best place to mount a speed camera or vehicle activated sign along a road have based their decision on experience, site characteristics and available guidelines (Department for Transport, 2007; Department for Transport, 2006; Department for Transport, 2003). These decisions can be subjective and indications are that a more formal and directed approach aimed at bringing these available guidelines together in a model will be beneficial in making the right decision as to where to place a speed camera or vehicle activated sign is to be made. The use of optimisation techniques have been applied in other areas of research but this has been clearly absent in the Transport Safety sector. This research aims to contribute to speed reduction by developing a model to help decision makers determine the optimum location for a speed control device. In order to achieve this, the first study involved the development of an Empirical Bayes Negative Binomial regression accident prediction model to predict the number of fatal and serious accidents combined and the number of slight accidents. The accident prediction model that was used explored the effect of certain geometric and traffic characteristics on the effect of the severity of road traffic accident numbers on selected A-roads within the Nottinghamshire and Leicestershire regions of United Kingdom. On A-roads some model variables (n=10) were found to be statistically significant for slight accidents and (n=6) for fatal and serious accidents. The next study used the accident prediction model developed in two optimisation techniques to help predict the optimal location for speed cameras or vehicle activated signs. Pattern Search and Genetic Algorithms were the two main types of optimisation techniques utilised in this thesis. The results show that the two methods did produce similar results in some instances but different in others. Optimised results were compared to some existing sites with speed cameras some of the results obtained from the optimisation techniques used were within proximity of about 160m. A validation method was applied to the genetic algorithm and pattern search optimisation methods. The pattern search method was found to be more consistent than the genetic algorithm method. Genetic algorithm results produced slightly different results at validation in comparison with the initial results. T-test results show a significant difference in the function values for the validated genetic algorithm (M= 607649.34, SD= 1055520.75) and the validated pattern search function values (M= 2.06, SD= 1.17) under the condition t (79) = 5.15, p=0.000. There is a role that optimisation techniques can play in helping to determine the optimum location for a speed camera or vehicle activated sign based on a set of objectives and specified constraints. The research findings as a whole show that speed cameras and vehicle activated signs are an effective speed management tool. Their deployment however needs to be carefully considered by engineers, planners and decision makers so as to achieve the required level of effectiveness. The use of optimisation techniques which has been generally absent in the Transport Safety sector has been shown in this thesis to have the potential to contribute to improve speed management. There is however no doubt that this research will stimulate interest in this rather new but high potential area of Transport Safety

    Identification of infrastructure related risk factors, Deliverable 5.1 of the H2020 project SafetyCube

    Get PDF
    The present Deliverable (D5.1) describes the identification and evaluation of infrastructure related risk factors. It outlines the results of Task 5.1 of WP5 of SafetyCube, which aimed to identify and evaluate infrastructure related risk factors and related road safety problems by (i) presenting a taxonomy of infrastructure related risks, (ii) identifying “hot topics” of concern for relevant stakeholders and (iii) evaluating the relative importance for road safety outcomes (crash risk, crash frequency and severity etc.) within the scientific literature for each identified risk factor. To help achieve this, Task 5.1 has initially exploited current knowledge (e.g. existing studies) and, where possible, existing accident data (macroscopic and in-depth) in order to identify and rank risk factors related to the road infrastructure. This information will help further on in WP5 to identify countermeasures for addressing these risk factors and finally to undertake an assessment of the effects of these countermeasures. In order to develop a comprehensive taxonomy of road infrastructure-related risks, an overview of infrastructure safety across Europe was undertaken to identify the main types of road infrastructure-related risks, using key resources and publications such as the European Road Safety Observatory (ERSO), The Handbook of Road Safety Measures (Elvik et al., 2009), the iRAP toolkit and the SWOV factsheets, to name a few. The taxonomy developed contained 59 specific risk factors within 16 general risk factors, all within 10 infrastructure elements. In addition to this, stakeholder consultations in the form of a series of workshops were undertaken to prioritise risk factors (‘hot topics’) based on the feedback from the stakeholders on which risk factors they considered to be the most important or most relevant in terms of road infrastructure safety. The stakeholders who attended the workshops had a wide range of backgrounds (e.g. government, industry, research, relevant consumer organisations etc.) and a wide range of interests and knowledge. The identified ‘hot topics’ were ranked in terms of importance (i.e. which would have the greatest effect on road safety). SafetyCube analysis will put the greatest emphasis on these topics (e.g. pedestrian/cyclist safety, crossings, visibility, removing obstacles). To evaluate the scientific literature, a methodology was developed in Work Package 3 of the SafetyCube project. WP5 has applied this methodology to road infrastructure risk factors. This uniformed approach facilitated systematic searching of the scientific literature and consistent evaluation of the evidence for each risk factor. The method included a literature search strategy, a ‘coding template’ to record key data and metadata from individual studies, and guidelines for summarising the findings (Martensen et al, 2016b). The main databases used in the WP5 literature search were Scopus and TRID, with some risk factors utilising additional database searches (e.g. Google Scholar, Science Direct). Studies using crash data were considered highest priority. Where a high number of studies were found, further selection criteria were applied to ensure the best quality studies were included in the analysis (e.g. key meta-analyses, recent studies, country origin, importance). Once the most relevant studies were identified for a risk factor, each study was coded within a template developed in WP3. Information coded for each study included road system element, basic study information, road user group information, study design, measures of exposure, measures of outcomes and types of effects. The information in the coded templates will be included in the relational database developed to serve as the main source (‘back end’) of the Decision Support System (DSS) being developed for SafetyCube. Each risk factor was assigned a secondary coding partner who would carry out the control procedure and would discuss with the primary coding partner any coding issues they had found. Once all studies were coded for a risk factor, a synopsis was created, synthesising the coded studies and outlining the main findings in the form of meta-analyses (where possible) or another type of comprehensive synthesis (e.g. vote-count analysis). Each synopsis consists of three sections: a 2 page summary (including abstract, overview of effects and analysis methods); a scientific overview (short literature synthesis, overview of studies, analysis methods and analysis of the effects) and finally supporting documents (e.g. details of literature search and comparison of available studies in detail, if relevant). To enrich the background information in the synopses, in-depth accident investigation data from a number of sources across Europe (i.e. GIDAS, CARE/CADaS) was sourced. Not all risk factors could be enhanced with this data, but where it was possible, the aim was to provide further information on the type of crash scenarios typically found in collisions where specific infrastructure-related risk factors are present. If present, this data was included in the synopsis for the specific risk factor. After undertaking the literature search and coding of the studies, it was found that for some risk factors, not enough detailed studies could be found to allow a synopsis to be written. Therefore, the revised number of specific risk factors that did have a synopsis written was 37, within 7 infrastructure elements. Nevertheless, the coded studies on the remaining risk factors will be included in the database to be accessible by the interested DSS users. At the start of each synopsis, the risk factor is assigned a colour code, which indicates how important this risk factor is in terms of the amount of evidence demonstrating its impact on road safety in terms of increasing crash risk or severity. The code can either be Red (very clear increased risk), Yellow (probably risky), Grey (unclear results) or Green (probably not risky). In total, eight risk factors were given a Red code (e.g. traffic volume, traffic composition, road surface deficiencies, shoulder deficiencies, workzone length, low curve radius), twenty were given a Yellow code (e.g. secondary crashes, risks associated with road type, narrow lane or median, roadside deficiencies, type of junction, design and visibility at junctions) seven were given a Grey code (e.g. congestion, frost and snow, densely spaced junctions etc.). The specific risk factors given the red code were found to be distributed across a range of infrastructure elements, demonstrating that the greatest risk is spread across several aspects of infrastructure design and traffic control. However, four ‘hot topics’ were rated as being risky, which were ‘small work-zone length’, ‘low curve radius’, ‘absence of shoulder’ and ‘narrow shoulder’. Some limitations were identified. Firstly, because of the method used to attribute colour code, it is in theory possible for a risk factor with a Yellow colour code to have a greater overall magnitude of impact on road safety than a risk factor coded Red. This would occur if studies reported a large impact of a risk factor but without sufficient consistency to allocate a red colour code. Road safety benefits should be expected from implementing measures to mitigate Yellow as well as Red coded infrastructure risks. Secondly, findings may have been limited by both the implemented literature search strategy and the quality of the studies identified, but this was to ensure the studies included were of sufficiently high quality to inform understanding of the risk factor. Finally, due to difficulties of finding relevant studies, it was not possible to evaluate the effects on road safety of all topics listed in the taxonomy. The next task of WP5 is to begin identifying measures that will counter the identified risk factors. Priority will be placed on investigating measures aimed to mitigate the risk factors identified as Red. The priority of risk factors in the Yellow category will depend on why they were assigned to this category and whether or not they are a hot topic

    Multi-level Safety Performance Functions For High Speed Facilities

    Get PDF
    High speed facilities are considered the backbone of any successful transportation system; Interstates, freeways, and expressways carry the majority of daily trips on the transportation network. Although these types of roads are relatively considered the safest among other types of roads, they still experience many crashes, many of which are severe, which not only affect human lives but also can have tremendous economical and social impacts. These facts signify the necessity of enhancing the safety of these high speed facilities to ensure better and efficient operation. Safety problems could be assessed through several approaches that can help in mitigating the crash risk on long and short term basis. Therefore, the main focus of the research in this dissertation is to provide a framework of risk assessment to promote safety and enhance mobility on freeways and expressways. Multi-level Safety Performance Functions (SPFs) were developed at the aggregate level using historical crash data and the corresponding exposure and risk factors to identify and rank sites with promise (hot-spots). Additionally, SPFs were developed at the disaggregate level utilizing real-time weather data collected from meteorological stations located at the freeway section as well as traffic flow parameters collected from different detection systems such as Automatic Vehicle Identification (AVI) and Remote Traffic Microwave Sensors (RTMS). These disaggregate SPFs can identify real-time risks due to turbulent traffic conditions and their interactions with other risk factors. In this study, two main datasets were obtained from two different regions. Those datasets comprise historical crash data, roadway geometrical characteristics, aggregate weather and traffic parameters as well as real-time weather and traffic data. iii At the aggregate level, Bayesian hierarchical models with spatial and random effects were compared to Poisson models to examine the safety effects of roadway geometrics on crash occurrence along freeway sections that feature mountainous terrain and adverse weather. At the disaggregate level; a main framework of a proactive safety management system using traffic data collected from AVI and RTMS, real-time weather and geometrical characteristics was provided. Different statistical techniques were implemented. These techniques ranged from classical frequentist classification approaches to explain the relationship between an event (crash) occurring at a given time and a set of risk factors in real time to other more advanced models. Bayesian statistics with updating approach to update beliefs about the behavior of the parameter with prior knowledge in order to achieve more reliable estimation was implemented. Also a relatively recent and promising Machine Learning technique (Stochastic Gradient Boosting) was utilized to calibrate several models utilizing different datasets collected from mixed detection systems as well as real-time meteorological stations. The results from this study suggest that both levels of analyses are important, the aggregate level helps in providing good understanding of different safety problems, and developing policies and countermeasures to reduce the number of crashes in total. At the disaggregate level, real-time safety functions help toward more proactive traffic management system that will not only enhance the performance of the high speed facilities and the whole traffic network but also provide safer mobility for people and goods. In general, the proposed multi-level analyses are useful in providing roadway authorities with detailed information on where countermeasures must be implemented and when resources should be devoted. The study also proves that traffic data collected from different detection systems could be a useful asset that should be utilized iv appropriately not only to alleviate traffic congestion but also to mitigate increased safety risks. The overall proposed framework can maximize the benefit of the existing archived data for freeway authorities as well as for road users

    Doctor of Philosophy

    Get PDF
    dissertationObservational studies are a frequently used "tool" in the field of road safety research because random assignments of safety treatments are not feasible or ethical. Data and modeling issues and challenges often plague observational road safety studies, and impact study results. The objective of this research was to explore a selected number of current data and modeling limitations in observational road safety studies and identify possible solutions. Three limitations were addressed in this research: (1) a majority of statistical road safety models use average annual daily traffic (AADT) to represent traffic volume and do not explicitly capture differences in traffic volume patterns throughout the day, even though crash risk is known to change by time of day, (2) statistical road safety models that use AADT on the "right-hand side" of the model equation do not explicitly account for the fact that these values for AADT are estimates with estimation errors, leading to potential bias in model estimation results, and (3) the current state-of-the-practice in road safety research often involves "starting over" with each study, choosing a model functional form based on the data fit, and letting the estimation results drive interpretations, without fully utilizing previous study results. These limitations were addressed by: (1) estimating the daily traffic patterns (by time of day) using geo-spatial interpolation methods, (2) accounting for measurement error in AADT estimates using measurement error models of expected crash frequency, and (3) incorporating prior knowledge on the safety effects of explanatory variables into regression models of expected crash frequency through informative priors in a Bayesian methodological framework. These alternative approaches to address the selected observational road safety study limitations were evaluated using data from rural, two-lane highways in the states of Utah and Washington. The datasets consisted of horizontal curve segments, for which crash data, roadway geometric features, operational characteristics, roadside features, and weather data were obtained. The results show that the methodological approaches developed in this research will allow road safety researchers and practitioners to accurately evaluate the expected road safety effects. These methods can further be used to increase the accuracy and repeatability of study results, and ultimately expand the current practice of evaluating regression models of expected crash frequency in observational road safety studies
    • 

    corecore