45,470 research outputs found

    Low-frequency sound source localization as a function of closed acoustic spaces

    Get PDF
    Further development of an emerging generalized theory of low-frequency sound localization in closed listening spaces is presented that aims to resolve the ambiguities inherent in previous research. The approach takes a robust set of equations based on source/listener location, reverberation time and room dimensions and tests them against a set of evaluation procedures to explore image location against theoretical expectations. Phantom imaging is germane to the methodology and its match within the theoretical framework is investigated. Binaural recordings are used to inspect a range of closed environments for localization clues each with a range of source-listener placements. A complementary series of small-scale listening tests are included for perceptual validation

    Subjective evaluation of an emerging theory of low-frequency sound source localization in closed acoustic spaces

    Get PDF
    An earlier reported theory of low-frequency sound-source localization within closed acoustic spaces proposed that virtual image acuity is strongly dependent on sufficient inter-arrival time between a direct sound and its first reflection. This current study aims to test the theory’s predictions by subjective experiment where participants are required to indicate perceived sound source direction, but without knowledge of loudspeaker location. Test signals of frequencies 40 Hz to 115 Hz take the form of either windowed sine or square waves. Results confirm broad agreement with theoretical expectations and support the conjecture, contrary to common expectation, that low-frequency sound localization within the context of closed acoustic spaces is possible, although strongly dependent on system configuration and size of a listening space

    A relativistic positioning system exploiting pulsating sources for navigation across the Solar System and beyond

    Get PDF
    We introduce an operational approach to the use of pulsating sources, located at spatial infinity, for defining a relativistic positioning and navigation system, based on the use of null four-vectors in a flatMinkowskian spacetime. We describe our approach and discuss the validity of it and of the other approximations we have considered in actual physical situations. As a prototypical case, we show how pulsars can be used to define such a positioning system: the reception of the pulses for a set of different sources whose positions in the sky and periods are assumed to be known allows the determination of the user's coordinates and spacetime trajectory, in the reference frame where the sources are at rest. In order to confirm the viability of the method, we consider an application example reconstructing the world-line of an idealized Earth in the reference frame of distant pulsars: in particular we have simulated the arrival times of the signals fromfour pulsars at the location of the Parkes radiotelescope in Australia. After pointing out the simplifications we have made, we discuss the accuracy of the method. Eventually, we suggest that the method could actually be used for navigation across the Solar System and be based on artificial sources, rather than pulsar
    corecore