35,891 research outputs found

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Distributed space-time coding for two-way wireless relay networks

    Get PDF
    In this paper, we consider distributed space-time coding for two-way wireless relay networks, where communication between two terminals is assisted by relay nodes. Relaying protocols using two, three, and four time slots are proposed. The protocols using four time slots are the traditional amplify-and-forward (AF) and decode-and-forward (DF) protocols, which do not consider the property of the two-way traffic. A new class of relaying protocols, termed as partial decode-and-forward (PDF), is developed for the two time slots transmission, where each relay first removes part of the noise before sending the signal to the two terminals. Protocols using three time slots are proposed to compensate the fact that the two time slots protocols cannot make use of direct transmission between the two terminals. For all protocols, after processing their received signals, the relays encode the resulting signals using a distributed linear dispersion (LD) code. The proposed AF protocols are shown to achieve the diversity order of min{N,K}(1- (log log P/log P)), where N is the number of relays, P is the total power of the network, and K is the number of symbols transmitted during each time slot. When random unitary matrix is used for LD code, the proposed PDF protocols resemble random linear network coding, where the former operates on the unitary group and the latter works on the finite field. Moreover, PDF achieves the diversity order of min{N,K} but the conventional DF can only achieve the diversity order of 1. Finally, we find that two time slots protocols also have advantages over four-time-slot protocols in media access control (MAC) layer

    Application of Space-Time Diversity/Coding For Power Line Channels

    Get PDF
    The purpose of the present work is to evaluate the application of space-time block codes to the transmission of digital data over the power-line communication channel (PLC). Data transmitted over the power-line channel is usually corrupted by impulsive noise. In this work we analyse the performance of space-time block codes in this type of environment and show that a significant performance gain can be achieved at almost no processing expense

    Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over Dispersive Channels via Sphere Decoding

    Get PDF
    Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit antennas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically infeasible due to high computational complexity (exponential in number of antennas and channel memory). Therefore, in practice, one often settles for a less complex suboptimal receiver structure, typically with an equalizer meant to suppress both the intersymbol and interuser interference, followed by the decoder. We propose a sphere decoding for the sequence detection in multiple antenna communication systems over dispersive channels. The sphere decoding provides the maximum-likelihood estimate with computational complexity comparable to the standard space-time decision-feedback equalizing (DFE) algorithms. The performance and complexity of the sphere decoding are compared with the DFE algorithm by means of simulations
    corecore