42,627 research outputs found

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    On the design of a wireless multi-antenna monitoring system

    Get PDF
    In this paper we investigate the design of a wireless monitoring system. This system consists of several wireless monitoring units, each transmitting data collected from sensors. This data is received and processed at a central control unit. The typical operating environment poses several challenges. The channel’s delay spread is substantial and the distance between receiver and transmitter is in the order of 400 meters. In order to guarantee reliable communication, we combine multi-antenna techniques (spacetime block coding) with strong coding (LDPC codes). The cost and complexity of the monitoring units is kept low, and most of the processing is performed on the central control unit. We present a system design for the monitoring units and show simulation results

    OFDMA/SC-FDMA aided space-time shift keying for dispersive multi-user scenarios

    No full text
    Motivated by the recent concept of Space-Time Shift Keying (STSK) developed for achieving a flexible diversity versus multiplexing gain trade-off, we propose a novel Orthogonal Frequency Division Multiple Access (OFDMA)/Single Carrier Frequency Division Multiple Access (SC-FDMA) aided multi-user STSK scheme for frequency-selective channels. The proposed OFDMA/SC-FDMA STSK scheme is capable of providing an improved performance in dispersive channels, while supporting multiple users in a multiple antenna aided wireless system. Furthermore, the scheme has the inherent potential of benefitting from the low-complexity single-stream Maximum-likelihood (ML) detector. Both an uncoded and a sophisticated near-capacity coded OFDMA/SC-FDMA STSK scheme were studied and their performances were compared in multiuser wideband Multiple-Input Multiple-Output (MIMO) scenarios. Explicitly, OFDMA/SC-FDMA aided STSK exhibits an excellent performance even in the presence of channel impairments due to the frequency-selectivity of wideband channels and proves to be a beneficial choice for high capacity multi-user MIMO systems

    Downlink Steered Space-Time Spreading Assisted Generalised Multicarrier DS-CDMA Using Sphere-Packing-Aided Multilevel Coding

    No full text
    This paper presents a novel generalised Multi-Carrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) system invoking smart antennas for improving the achievable performance in the downlink, as well as employing multi-dimensional Sphere Packing (SP) modulation for increasing the achievable diversity product. In this contribution, the MC DS-CDMA transmitter considered employs multiple Antenna Arrays (AA) and each of the AAs consists of several antenna elements. Furthermore, the proposed system employs both time- and frequency- (TF) domain spreading for extending the achievable capacity, when combined with a novel user-grouping technique for reducing the effects of Multiuser Interference (MUI). Moreover, in order to further enhance the system’s performance, we invoke a MultiLevel Coding (MLC) scheme, whose component codes are determined using the so-called equivalent capacity based constituent-code rate-calculation procedure invoking a 4-dimensional bit-to-SP-symbol mapping scheme. Our results demonstrate an approximately 3.8 dB Eb/N0 gain over an identical throughput scheme dispensing with SP modulation at a BER of 10?5

    Space Station communications and tracking systems modeling and RF link simulation

    Get PDF
    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Single-RF spatial modulation requires single-carrier transmission: frequency-domain turbo equalization for dispersive channels

    No full text
    In this paper, we propose a broadband single-carrier (SC) spatial-modulation (SM) based multiple-input multipleoutput (MIMO) architecture relying on a soft-decision (SoD) frequency-domain equalization (FDE) receiver. We demonstrate that conventional orthogonal frequency-division multiplexing (OFDM)-based broadband transmissions are not readily suitable for the single–radio frequency (RF) assisted SM-MIMO schemes, since this scheme does not exhibit any substantial performance advantage over single-antenna transmissions. To circumvent this limitation, a low-complexity soft-decision (SoD) FDE algorithm based on the minimum mean-square error (MMSE) criterion is invoked for our broadband SC-based SM-MIMO scheme, which is capable of operating in a strongly dispersive channel having a long channel impulse response (CIR) at a moderate decoding complexity. Furthermore, our SoD FDE attains a near-capacity performance with the aid of a three-stage concatenated SC-based SM architecture
    • …
    corecore