2,416 research outputs found

    A fully semi-Lagrangian discretization for the 2D Navier--Stokes equations in the vorticity--streamfunction formulation

    Full text link
    A numerical method for the two-dimensional, incompressible Navier--Stokes equations in vorticity--streamfunction form is proposed, which employs semi-Lagrangian discretizations for both the advection and diffusion terms, thus achieving unconditional stability without the need to solve linear systems beyond that required by the Poisson solver for the reconstruction of the streamfunction. A description of the discretization of Dirichlet boundary conditions for the semi-Lagrangian approach to diffusion terms is also presented. Numerical experiments on classical benchmarks for incompressible flow in simple geometries validate the proposed method

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area

    Strong L2 convergence of time Euler schemes for stochastic 3D Brinkman-Forchheimer-Navier-Stokes equations

    Full text link
    We prove that some time Euler schemes for the 3D Navier-Stokes equations modified by adding a Brinkman-Forchheimer term and a random perturbation converge in L2(Ω)L^2(\Omega). This extends previous results concerning the strong rate of convergence of some time discretization schemes for the 2D Navier Stokes equations. Unlike the 2D case, our proposed 3D model with the Brinkman-Forchheimer term allows for a strong rate of convergence of order almost 1/2, that is independent of the viscosity parameter

    Solving optimal control problems governed by random Navier-Stokes equations using low-rank methods

    Full text link
    Many problems in computational science and engineering are simultaneously characterized by the following challenging issues: uncertainty, nonlinearity, nonstationarity and high dimensionality. Existing numerical techniques for such models would typically require considerable computational and storage resources. This is the case, for instance, for an optimization problem governed by time-dependent Navier-Stokes equations with uncertain inputs. In particular, the stochastic Galerkin finite element method often leads to a prohibitively high dimensional saddle-point system with tensor product structure. In this paper, we approximate the solution by the low-rank Tensor Train decomposition, and present a numerically efficient algorithm to solve the optimality equations directly in the low-rank representation. We show that the solution of the vorticity minimization problem with a distributed control admits a representation with ranks that depend modestly on model and discretization parameters even for high Reynolds numbers. For lower Reynolds numbers this is also the case for a boundary control. This opens the way for a reduced-order modeling of the stochastic optimal flow control with a moderate cost at all stages.Comment: 29 page
    corecore