4,516 research outputs found

    Randomized protocols for asynchronous consensus

    Full text link
    The famous Fischer, Lynch, and Paterson impossibility proof shows that it is impossible to solve the consensus problem in a natural model of an asynchronous distributed system if even a single process can fail. Since its publication, two decades of work on fault-tolerant asynchronous consensus algorithms have evaded this impossibility result by using extended models that provide (a) randomization, (b) additional timing assumptions, (c) failure detectors, or (d) stronger synchronization mechanisms than are available in the basic model. Concentrating on the first of these approaches, we illustrate the history and structure of randomized asynchronous consensus protocols by giving detailed descriptions of several such protocols.Comment: 29 pages; survey paper written for PODC 20th anniversary issue of Distributed Computin

    How hard is it to take a snapshot

    Get PDF
    Abstract. The snapshot object is an important and well-studied primitive in distributed computing. This paper will present some implementations of snapshots from registers, in both asycnhronous and synchronous systems, and discuss known lower bounds on the time and space complexity of this problem
    • …
    corecore