357 research outputs found

    Computational Complexity for Physicists

    Full text link
    These lecture notes are an informal introduction to the theory of computational complexity and its links to quantum computing and statistical mechanics.Comment: references updated, reprint available from http://itp.nat.uni-magdeburg.de/~mertens/papers/complexity.shtm

    Quivers, YBE and 3-manifolds

    Full text link
    We study 4d superconformal indices for a large class of N=1 superconformal quiver gauge theories realized combinatorially as a bipartite graph or a set of "zig-zag paths" on a two-dimensional torus T^2. An exchange of loops, which we call a "double Yang-Baxter move", gives the Seiberg duality of the gauge theory, and the invariance of the index under the duality is translated into the Yang-Baxter-type equation of a spin system defined on a "Z-invariant" lattice on T^2. When we compactify the gauge theory to 3d, Higgs the theory and then compactify further to 2d, the superconformal index reduces to an integral of quantum/classical dilogarithm functions. The saddle point of this integral unexpectedly reproduces the hyperbolic volume of a hyperbolic 3-manifold. The 3-manifold is obtained by gluing hyperbolic ideal polyhedra in H^3, each of which could be thought of as a 3d lift of the faces of the 2d bipartite graph.The same quantity is also related with the thermodynamic limit of the BPS partition function, or equivalently the genus 0 topological string partition function, on a toric Calabi-Yau manifold dual to quiver gauge theories. We also comment on brane realization of our theories. This paper is a companion to another paper summarizing the results.Comment: 61 pages, 16 figures; v2: typos correcte

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Visualized Algorithm Engineering on Two Graph Partitioning Problems

    Get PDF
    Concepts of graph theory are frequently used by computer scientists as abstractions when modeling a problem. Partitioning a graph (or a network) into smaller parts is one of the fundamental algorithmic operations that plays a key role in classifying and clustering. Since the early 1970s, graph partitioning rapidly expanded for applications in wide areas. It applies in both engineering applications, as well as research. Current technology generates massive data (“Big Data”) from business interactions and social exchanges, so high-performance algorithms of partitioning graphs are a critical need. This dissertation presents engineering models for two graph partitioning problems arising from completely different applications, computer networks and arithmetic. The design, analysis, implementation, optimization, and experimental evaluation of these models employ visualization in all aspects. Visualization indicates the performance of the implementation of each Algorithm Engineering work, and also helps to analyze and explore new algorithms to solve the problems. We term this research method as “Visualized Algorithm Engineering (VAE)” to emphasize the contribution of the visualizations in these works. The techniques discussed here apply to a broad area of problems: computer networks, social networks, arithmetic, computer graphics and software engineering. Common terminologies accepted across these disciplines have been used in this dissertation to guarantee practitioners from all fields can understand the concepts we introduce

    Graph Theory

    Get PDF
    Graph theory is a rapidly developing area of mathematics. Recent years have seen the development of deep theories, and the increasing importance of methods from other parts of mathematics. The workshop on Graph Theory brought together together a broad range of researchers to discuss some of the major new developments. There were three central themes, each of which has seen striking recent progress: the structure of graphs with forbidden subgraphs; graph minor theory; and applications of the entropy compression method. The workshop featured major talks on current work in these areas, as well as presentations of recent breakthroughs and connections to other areas. There was a particularly exciting selection of longer talks, including presentations on the structure of graphs with forbidden induced subgraphs, embedding simply connected 2-complexes in 3-space, and an announcement of the solution of the well-known Oberwolfach Problem
    corecore