4 research outputs found

    Consistency on the Vertices, Edges and Mask: A Semi-Supervised Learning Approach for Image Segmentation

    Get PDF
    In this thesis, we present a novel method for performing image segmentation in a semi-supervised approach, which we consider to be particularly relevant because of the substantial cost of obtaining pixel-wise annotations required to train supervised. This method, that we will call Consistency on the Vertices, Edges and Mask, is one of the first methods that can be used for training deep neural networks to perform image segmentation in a semi-supervised setting where only a small portion of training data is labeled. In our setting, we train a network to predict masks, edges and vertices for a given input image, and then we penalize the network for not being consistent with its predictions obtaining the theoretical edges an vertices from the predicted mask using a derivable version of the Canny edge detector. We also present results on the Cityscapes Dataset where we obtain outstanding results achieving about 92% of the fully supervised performance labeling only 10% of the data and 98% labeling 25%. This thesis also contains a brief introduction on the field of deep learning and semi-supervised learning, relevant previous work that has been published in the last year which inspiredOutgoin

    Depth Estimation Using 2D RGB Images

    Get PDF
    Single image depth estimation is an ill-posed problem. That is, it is not mathematically possible to uniquely estimate the 3rd dimension (or depth) from a single 2D image. Hence, additional constraints need to be incorporated in order to regulate the solution space. As a result, in the first part of this dissertation, the idea of constraining the model for more accurate depth estimation by taking advantage of the similarity between the RGB image and the corresponding depth map at the geometric edges of the 3D scene is explored. Although deep learning based methods are very successful in computer vision and handle noise very well, they suffer from poor generalization when the test and train distributions are not close. While, the geometric methods do not have the generalization problem since they benefit from temporal information in an unsupervised manner. They are sensitive to noise, though. At the same time, explicitly modeling of a dynamic scenes as well as flexible objects in traditional computer vision methods is a big challenge. Considering the advantages and disadvantages of each approach, a hybrid method, which benefits from both, is proposed here by extending traditional geometric models’ abilities to handle flexible and dynamic objects in the scene. This is made possible by relaxing geometric computer vision rules from one motion model for some areas of the scene into one for every pixel in the scene. This enables the model to detect even small, flexible, floating debris in a dynamic scene. However, it makes the optimization under-constrained. To change the optimization from under-constrained to over-constrained while maintaining the model’s flexibility, ”moving object detection loss” and ”synchrony loss” are designed. The algorithm is trained in an unsupervised fashion. The primary results are in no way comparable to the current state of the art. Because the training process is so slow, it is difficult to compare it to the current state of the art. Also, the algorithm lacks stability. In addition, the optical flow model is extremely noisy and naive. At the end, some solutions are suggested to address these issues

    UNCOVERING PATTERNS IN COMPLEX DATA WITH RESERVOIR COMPUTING AND NETWORK ANALYTICS: A DYNAMICAL SYSTEMS APPROACH

    Get PDF
    In this thesis, we explore methods of uncovering underlying patterns in complex data, and making predictions, through machine learning and network science. With the availability of more data, machine learning for data analysis has advanced rapidly. However, there is a general lack of approaches that might allow us to 'open the black box'. In the machine learning part of this thesis, we primarily use an architecture called Reservoir Computing for time-series prediction and image classification, while exploring how information is encoded in the reservoir dynamics. First, we investigate the ways in which a Reservoir Computer (RC) learns concepts such as 'similar' and 'different', and relationships such as 'blurring', 'rotation' etc. between image pairs, and generalizes these concepts to different classes unseen during training. We observe that the high dimensional reservoir dynamics display different patterns for different relationships. This clustering allows RCs to perform significantly better in generalization with limited training compared with state-of-the-art pair-based convolutional/deep Siamese Neural Networks. Second, we demonstrate the utility of an RC in the separation of superimposed chaotic signals. We assume no knowledge of the dynamical equations that produce the signals, and require only that the training data consist of finite time samples of the component signals. We find that our method significantly outperforms the optimal linear solution to the separation problem, the Wiener filter. To understand how representations of signals are encoded in an RC during learning, we study its dynamical properties when trained to predict chaotic Lorenz signals. We do so by using a novel, mathematical fixed-point-finding technique called directional fibers. We find that, after training, the high dimensional RC dynamics includes fixed points that map to the known Lorenz fixed points, but the RC also has spurious fixed points, which are relevant to how its predictions break down. While machine learning is a useful data processing tool, its success often relies on a useful representation of the system's information. In contrast, systems with a large numbers of interacting components may be better analyzed by modeling them as networks. While numerous advances in network science have helped us analyze such systems, tools that identify properties on networks modeling multi-variate time-evolving data (such as disease data) are limited. We close this gap by introducing a novel data-driven, network-based Trajectory Profile Clustering (TPC) algorithm for 1) identification of disease subtypes and 2) early prediction of subtype/disease progression patterns. TPC identifies subtypes by clustering patients with similar disease trajectory profiles derived from bipartite patient-variable networks. Applying TPC to a Parkinson’s dataset, we identify 3 distinct subtypes. Additionally, we show that TPC predicts disease subtype 4 years in advance with 74% accuracy

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore