30,227 research outputs found

    Discontinuous grammar as a foreign language

    Get PDF
    [Abstract] In order to achieve deep natural language understanding, syntactic constituent parsing is a vital step, highly demanded by many artificial intelligence systems to process both text and speech. One of the most recent proposals is the use of standard sequence-to-sequence models to perform constituent parsing as a machine translation task, instead of applying task-specific parsers. While they show a competitive performance, these text-to-parse transducers are still lagging behind classic techniques in terms of accuracy, coverage and speed. To close the gap, we here extend the framework of sequence-to-sequence models for constituent parsing, not only by providing a more powerful neural architecture for improving their performance, but also by enlarging their coverage to handle the most complex syntactic phenomena: discontinuous structures. To that end, we design several novel linearizations that can fully produce discontinuities and, for the first time, we test a sequence-to-sequence model on the main discontinuous benchmarks, obtaining competitive results on par with task-specific discontinuous constituent parsers and achieving state-of-the-art scores on the (discontinuous) English Penn Treebank.Xunta de Galicia; ED431G 2019/01Xunta de Galicia; ED431C 2020/11We acknowledge the European Research Council (ERC), which has funded this research under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, grant agreement No 714150) and the Horizon Europe research and innovation programme (SALSA, grant agreement No 101100615), ERDF/ MICINN-AEI (SCANNER-UDC, PID2020-113230RB-C21), Xunta de Galicia (ED431C 2020/11), and Centro de InvestigaciĂłn de Galicia ‘‘CITIC”, funded by Xunta de Galicia and the European Union (ERDF - Galicia 2014–2020 Program), by grant ED431G 2019/01. Funding for open access charge: Universidade da Coruña/CISUG

    Hierarchical Graph Neural Networks for Proprioceptive 6D Pose Estimation of In-hand Objects

    Full text link
    Robotic manipulation, in particular in-hand object manipulation, often requires an accurate estimate of the object's 6D pose. To improve the accuracy of the estimated pose, state-of-the-art approaches in 6D object pose estimation use observational data from one or more modalities, e.g., RGB images, depth, and tactile readings. However, existing approaches make limited use of the underlying geometric structure of the object captured by these modalities, thereby, increasing their reliance on visual features. This results in poor performance when presented with objects that lack such visual features or when visual features are simply occluded. Furthermore, current approaches do not take advantage of the proprioceptive information embedded in the position of the fingers. To address these limitations, in this paper: (1) we introduce a hierarchical graph neural network architecture for combining multimodal (vision and touch) data that allows for a geometrically informed 6D object pose estimation, (2) we introduce a hierarchical message passing operation that flows the information within and across modalities to learn a graph-based object representation, and (3) we introduce a method that accounts for the proprioceptive information for in-hand object representation. We evaluate our model on a diverse subset of objects from the YCB Object and Model Set, and show that our method substantially outperforms existing state-of-the-art work in accuracy and robustness to occlusion. We also deploy our proposed framework on a real robot and qualitatively demonstrate successful transfer to real settings

    Convergence of Dynamics on Inductive Systems of Banach Spaces

    Full text link
    Many features of physical systems, both qualitative and quantitative, become sharply defined or tractable only in some limiting situation. Examples are phase transitions in the thermodynamic limit, the emergence of classical mechanics from quantum theory at large action, and continuum quantum field theory arising from renormalization group fixed points. It would seem that few methods can be useful in such diverse applications. However, we here present a flexible modeling tool for the limit of theories: soft inductive limits constituting a generalization of inductive limits of Banach spaces. In this context, general criteria for the convergence of dynamics will be formulated, and these criteria will be shown to apply in the situations mentioned and more.Comment: Comments welcom

    Classification of multiplicity free quasi-Hamiltonian manifolds

    Full text link
    A quasi-Hamiltonian manifold is called multiplicity free if all of its symplectic reductions are 0-dimensional. In this paper, we classify compact, multiplicity free, twisted quasi-Hamiltonian manifolds for simply connected, compact Lie groups. Thereby, we recover old and find new examples of these structures.Comment: v1: 35 pages, this is a complete revision of arxiv:1612.03843. Since some omitted parts have already been cited, I opted for a new submission under a new title. v2: 39 pages, revised according to the advice of a very helpful refere

    Boundedness, Ultracontractive Bounds and Optimal Evolution of the Support for Doubly Nonlinear Anisotropic Diffusion

    Full text link
    We investigate some regularity properties of a class of doubly nonlinear anisotropic evolution equations whose model case is \begin{align*} \partial_t \big(|u|^{\alpha -1}u \big) - \sum^N_{i=1} \partial_i \big( |\partial_i u|^{p_i - 2} \partial_i u \big) = 0, \end{align*} where α∈(0,1)\alpha \in (0,1) and pi∈(1,∞)p_i \in (1, \infty). We obtain super and ultracontractive bounds, and global boundedness in space for solutions to the Cauchy problem with initial data in Lα+1(RN)L^{\alpha+1}(\mathbb{R}^N), and show that the mass is nonincreasing over time. As a consequence, compactly supported evolution is shown for optimal exponents. We introduce a seemingly new paradigm, by showing that Caccioppoli estimates, local boundedness and semicontinuity are consequences of the membership to a suitable energy class. This membership is proved by first establishing the continuity of the map t↩∣uâˆŁÎ±âˆ’1u(⋅,t)∈Lloc1+1/α(Ω)t \mapsto |u|^{\alpha-1}u(\cdot,t) \in L^{1+1/\alpha}_{loc}(\Omega) permitting us to use a suitable mollified weak formulation along with an appropriate test function

    A systematic literature review on source code similarity measurement and clone detection: techniques, applications, and challenges

    Full text link
    Measuring and evaluating source code similarity is a fundamental software engineering activity that embraces a broad range of applications, including but not limited to code recommendation, duplicate code, plagiarism, malware, and smell detection. This paper proposes a systematic literature review and meta-analysis on code similarity measurement and evaluation techniques to shed light on the existing approaches and their characteristics in different applications. We initially found over 10000 articles by querying four digital libraries and ended up with 136 primary studies in the field. The studies were classified according to their methodology, programming languages, datasets, tools, and applications. A deep investigation reveals 80 software tools, working with eight different techniques on five application domains. Nearly 49% of the tools work on Java programs and 37% support C and C++, while there is no support for many programming languages. A noteworthy point was the existence of 12 datasets related to source code similarity measurement and duplicate codes, of which only eight datasets were publicly accessible. The lack of reliable datasets, empirical evaluations, hybrid methods, and focuses on multi-paradigm languages are the main challenges in the field. Emerging applications of code similarity measurement concentrate on the development phase in addition to the maintenance.Comment: 49 pages, 10 figures, 6 table

    Effective Transfer of Pretrained Large Visual Model for Fabric Defect Segmentation via Specifc Knowledge Injection

    Full text link
    Fabric defect segmentation is integral to textile quality control. Despite this, the scarcity of high-quality annotated data and the diversity of fabric defects present significant challenges to the application of deep learning in this field. These factors limit the generalization and segmentation performance of existing models, impeding their ability to handle the complexity of diverse fabric types and defects. To overcome these obstacles, this study introduces an innovative method to infuse specialized knowledge of fabric defects into the Segment Anything Model (SAM), a large-scale visual model. By introducing and training a unique set of fabric defect-related parameters, this approach seamlessly integrates domain-specific knowledge into SAM without the need for extensive modifications to the pre-existing model parameters. The revamped SAM model leverages generalized image understanding learned from large-scale natural image datasets while incorporating fabric defect-specific knowledge, ensuring its proficiency in fabric defect segmentation tasks. The experimental results reveal a significant improvement in the model's segmentation performance, attributable to this novel amalgamation of generic and fabric-specific knowledge. When benchmarking against popular existing segmentation models across three datasets, our proposed model demonstrates a substantial leap in performance. Its impressive results in cross-dataset comparisons and few-shot learning experiments further demonstrate its potential for practical applications in textile quality control.Comment: 13 pages,4 figures, 3 table

    Predicting extreme events in a data-driven model of turbulent shear flow using an atlas of charts

    Full text link
    Dynamical systems with extreme events are difficult to capture with data-driven modeling, due to the relative scarcity of data within extreme events compared to the typical dynamics of the system, and the strong dependence of the long-time occurrence of extreme events on short-time conditions.A recently developed technique [Floryan, D. & Graham, M. D. Data-driven discovery of intrinsic dynamics. Nat Mach Intell 4\textbf{4}, 1113-1120 (2022)], here denoted as Charts and Atlases for Nonlinear Data-Driven Dynamics on Manifolds\textit{Charts and Atlases for Nonlinear Data-Driven Dynamics on Manifolds}, or CANDyMan, overcomes these difficulties by decomposing the time series into separate charts based on data similarity, learning dynamical models on each chart via individual time-mapping neural networks, then stitching the charts together to create a single atlas to yield a global dynamical model. We apply CANDyMan to a nine-dimensional model of turbulent shear flow between infinite parallel free-slip walls under a sinusoidal body force [Moehlis, J., Faisst, H. & Eckhardt, B. A low-dimensional model for turbulent shear flows. New J Phys 6\textbf{6}, 56 (2004)], which undergoes extreme events in the form of intermittent quasi-laminarization and long-time full laminarization. We demonstrate that the CANDyMan method allows the trained dynamical models to more accurately forecast the evolution of the model coefficients, reducing the error in the predictions as the model evolves forward in time. The technique exhibits more accurate predictions of extreme events, capturing the frequency of quasi-laminarization events and predicting the time until full laminarization more accurately than a single neural network.Comment: 9 pages, 7 figure

    Focused Decoding Enables 3D Anatomical Detection by Transformers

    Full text link
    Detection Transformers represent end-to-end object detection approaches based on a Transformer encoder-decoder architecture, exploiting the attention mechanism for global relation modeling. Although Detection Transformers deliver results on par with or even superior to their highly optimized CNN-based counterparts operating on 2D natural images, their success is closely coupled to access to a vast amount of training data. This, however, restricts the feasibility of employing Detection Transformers in the medical domain, as access to annotated data is typically limited. To tackle this issue and facilitate the advent of medical Detection Transformers, we propose a novel Detection Transformer for 3D anatomical structure detection, dubbed Focused Decoder. Focused Decoder leverages information from an anatomical region atlas to simultaneously deploy query anchors and restrict the cross-attention's field of view to regions of interest, which allows for a precise focus on relevant anatomical structures. We evaluate our proposed approach on two publicly available CT datasets and demonstrate that Focused Decoder not only provides strong detection results and thus alleviates the need for a vast amount of annotated data but also exhibits exceptional and highly intuitive explainability of results via attention weights. Our code is available at https://github.com/bwittmann/transoar.Comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2023:00

    Non-parametric online market regime detection and regime clustering for multidimensional and path-dependent data structures

    Full text link
    In this work we present a non-parametric online market regime detection method for multidimensional data structures using a path-wise two-sample test derived from a maximum mean discrepancy-based similarity metric on path space that uses rough path signatures as a feature map. The latter similarity metric has been developed and applied as a discriminator in recent generative models for small data environments, and has been optimised here to the setting where the size of new incoming data is particularly small, for faster reactivity. On the same principles, we also present a path-wise method for regime clustering which extends our previous work. The presented regime clustering techniques were designed as ex-ante market analysis tools that can identify periods of approximatively similar market activity, but the new results also apply to path-wise, high dimensional-, and to non-Markovian settings as well as to data structures that exhibit autocorrelation. We demonstrate our clustering tools on easily verifiable synthetic datasets of increasing complexity, and also show how the outlined regime detection techniques can be used as fast on-line automatic regime change detectors or as outlier detection tools, including a fully automated pipeline. Finally, we apply the fine-tuned algorithms to real-world historical data including high-dimensional baskets of equities and the recent price evolution of crypto assets, and we show that our methodology swiftly and accurately indicated historical periods of market turmoil.Comment: 65 pages, 52 figure
    • 

    corecore